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Abstract—The paper addresses the properties of finite element solutions for the Helmholtz equa-
tion. The h-version of the finite element method with piecewise linear approximation is applied to
a one-dimensional model problem. New results are shown on stability and error estimation of the
discrete model. In all propositions, assumptions are made on the magnitude of hk only, where k is
the wavelength and h is the stepwidth of the FE-mesh. Previous analytical results had been shown
with the assumption that 42k is small. For medium and high wavenumber, these results do not cover
the meshsizes that are applied in practical applications. The main estimate reveals that the error
in H1-norm of discrete solutions for the Helmholtz equation is polluted when k2h is not small. The
error is then not quasioptimal; i.e., the relation of the FE-error to the error of best approximation
generally depends on the wavenumber k. It is noted that the pollution term in the relative error is of
the same order as the phase lead of the numerical solution. In the result of this analysis, thorough and
rigorous understanding of error behavior throughout the range of convergence is gained. Numerical
results are presented that show sharpness of the error estimates and highlight some phenomena of
the discrete solution behavior. The h-p-version of the FEM is studied in Part II.

Keywords—Helmholtz equation, Finite element method, Elliptic, Partial differential equation.

1. INTRODUCTION

Boundary value problems for the Helmholtz equation
Au + k*u = §,

where k is the wave number, arise in a number of physical applications [1], in particular in
problems of wave scattering and fluid-solid-interaction [2].

The quality of discrete numerical solutions to the Helmholtz equation depends significantly on
the physical parameter k. It is clear and well known that the stepwidth h of meshes for finite
element or finite difference computations should be adjusted to the wavenumber k. In practice,
one usually follows a “rule of the thumb” of the form [3, p. 71]

kh = const.

In computations with low wavenumber, this rule leads to sufficiently correct results. The quality
of numerical results, however, deteriorates if the wavenumber k increases. Thus, Bayliss et al. [4]
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10 F. IHLENBURG AND I. BABUSKA

solve the two-dimensional Helmholtz equation by piecewise linear FEM and tabulate the errors
in L2-norm. The results show that the errors grow with k for k h = const. On the other hand, the
errors are bounded on a series of meshes with k3h% ~ const. A convergence theorem is stated in [4]
under the assumption that k?h is sufficiently small. As a consequence of this theorem, it is shown
that for certain classes of data the relative errors are O((kh)P) in Hl-norm and O(k(kh)?*1) in
L?-norm, where p is the order of polynomial approximation. The theorem from [4] has been
rigorously proven for one-dimensional Helmholtz problems and piecewise linear approximation
by Aziz et al. [5] and Douglas et al. [6]. In particular, it is shown that, if k%A is sufficiently
small, the error in Hl-seminorm satisfies a quasioptimal estimate

— <C inf |u~-
|u 'Ufe|1_ ulenv,.lu Ulli

where V}, is the finite element subspace and C is a constant that does not depend on & and h.

However, the assumption on k%h is unsatisfactory from a practical point of view since it gen-
erally holds on very fine mesh only.

To the knowledge of the authors, no error estimates for finite element solutions of the Helmholtz
equation are known in the practically relevant case when the magnitude of kh is constrained. In
this paper, we show for a one-dimensional model problem new results on stability and error
estimation that hold under assumptions on the magnitude of kh only. This is called the pre-
asymptotic case, whereas statements with the assumption that k2h is small are called asymptotic.
The paper is the first in a series dealing with the Galerkin finite element method for Helmholtz
problems. In this first part, we restrict ourselves to piecewise linear approximation (p = 1) and
concentrate on the H'-norm of the error.

As a result of this analysis, a thorough and rigorous understanding of the error behavior of
the finite element solution throughout the range of convergence is gained for the most simple
case. However, as investigation of a fluid-solid interaction problem (7] and of the two-dimensional
Helmholtz equation [8,9] have shown, the results of this basic investigation are well suited to
explain the error behavior of more complicated Helmholtz problems.

In particular, it will be shown here that the relative error of the FE-solution in H!-seminorm
generally can be written as

&1 < Cikh + Cak3R2.

The first member on the right hand side reflects the approximation error which is of local charac-
ter; it is present also in the asymptotic estimates. The second part is due to numerical pollution.
This is a global effect that can be connected to a phase lead of the numerical solution. Note that
the asymptotic estimate

&, < Ckh

follows from the preasymptotic estimate if k2h is small. The effect of numerical pollution in the
H'-estimates is asymptotically negligible which leads to the previously known estimates.

As a prerequisite to the error estimate, the Babuska-Brezzi constant is computed here, both on
the full space and in the finite element subspace. The constant is found to be of order k™! in both
cases. This is in correlation with previous numerical results reported by Demkowicz (10, p. 83]
for a one-dimensional acoustic fluid-structure interaction problem.

We remark that the observation of the phase lead in discrete solutions for Helmholtz prob-
lems has given rise to specific modifications of the finite element method (e.g., the Galerkin
Least Squares (GLS) method [3,11,12]. These methods can be interpreted in a broader sense
as generalized finite element methods [9,13]. The reduction of the phase lead achieved by the
GLS-method is equivalent to raising the order of k, h in the pollution term of the preasymptotic
error [13]. In one dimension, the phase error can be eliminated without sacrificing the optimal
order of convergence. In two dimensions, it is not possible to eliminate pollution entirely by any
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modification of the Galerkin finite element approach [12,13]. A generalized FEM that leads to
minimal phase error for arbitrary wave direction in two dimensions is presented in [9)].

The paper is organized as follows. We start (Section 2) with a recollection of existence, unique-
ness and stability results in the strong sense. We then show existence-uniqueness for the weak
solution and compute the Babuska-Brezzi constant. These results are the prerequisite for the
main subject, the analysis of the finite element solution (Section 3). We first (Section 3.1) recall
a standard approximation result in H'! showing that the relative approximation error is O(hk).
We then (Section 3.2) formulate and prove a statement of existence-uniqueness for the finite ele-
ment solution following Douglas et al. [6]. The proof is outlined in detail in order to keep track
of all restrictions on h and k. The essence of the argument is that the finite element solution is
quasioptimal provided the magnitude of hk? is sufficiently small. We then turn to the preasymp-
totic analysis where we make assumptions on the magnitude of hk only. Here, the finite element
solution is analyzed via it’s Green’s function representation.! We investigate stability and show
that on the finite-dimensional level the B-B-constant is of order k=!. We then show that the rela-
tive error in H'-norm is bounded if hk and h2k3 are appropriately constrained. In the numerical
evaluation (Section 4), we present results from various computational experiments, applying and
illustrating the main results of our study. We show, in particular, that the restriction of hk? is
indeed necessary for quasioptimality of the finite element solution. The numerical experiments
also prove that the theoretical error estimates are sharp.

2. THE MODEL PROBLEM

In this section, we prove existence-uniqueness of the solution to the one-dimensional reduced
wave equation with Dirichlet and nonreflecting boundary conditions. We analyze the cases u €
H?(0,1) and u € H'(0,1) separately and show that different stability conditions apply for these
two cases. The construction of the Green’s function to the problem is essential to both proofs.

2.1. The Boundary Value Problem
Let Q = (0,1) and let on Q the boundary value problem Lu = —f be given:

u"(z) + k*u(z) = - f(z), (2.1)
u(0) =0, (2.2)
w'(1) — iku(1) =0, (2.3)

where, for simplicity, f(z) € C*(0,1) and k = const.,k € R,k > 0.
Physically, if u is the variation of pressure in an acoustic medium at a fixed time, equation (2.1)
is the equation of a plane wave with (nondimensional) wave number
wL

k ’
c

where w is a given frequency, L is the measure of the domain and c¢ is the speed of sound in the
acoustic medium. In z = 0, a Dirichlet boundary condition is given (prescribed pressure); the
mixed boundary condition in z = 1 is a Robin condition which in the one-dimensional case is
equivalent to the Sommerfeldt radiation condition.

Notation

By L%(Q) := H°(Q), we denote the space of all square-integrable complex-valued functions
equipped with the inner product

(v,w) :=/v(z)u‘;(a:) dr
Q

1The analysis is thus limited to uniform meshes. However, similar error behavior has been observed in numerical
computation on highly irregular meshes [13].
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and the norm
l[wl} == V/(w, w).

We use the notation H*(Q2) for the the Sobolev spaces of (integer) order s in the usual sense.
Besides the usual full norm on H?®, we will also consider the seminorm

luls = {|0°ul],
where 9°u is the s-derivative of u in the distributional sense. Note that for functions satisfying
a Dirichlet condition (2.2), the seminorm |u|; is equivalent to the full H'-norm ||ufl; = (|ul? +
llul12)172].
Existence and Uniqueness in H2(0,1)

The BVP (2.1)-(2.3) has a unique solution in the space H?(0,1). For the proof see, e.g., [5).
The existence of the solution is concluded from the following construction.

Inverse Operator
The Green’s function of the BVP (2.1)-(2.3) is

Cla.s) 1{sinkxe“°3; 0<z<s, 04
D= % sin kse**®; s<gz <1. (24)
The solution u(x) of (2.1)—(2.3) exists for all £ > 0 and can be written as
1
u(z) = / G(z,s)f(s)ds.
0
LEMMA 1. Let u € H%(0,1) be the solution to the BVP (2.1)-(2.3). Then, if f € L*(0,1)
lull <kHI£1I, (2.5)
luls <11 £1I, (2.6)
ul2 < (1 + k)£l (2.7)
PROOF. See Douglas et al. [6]. (]

REMARK 1. The aforementioned results are valid also for the adjoint problem (2.1), (2.2) and
u'(1) + iku(l) = 0.

2.2. Variational Formulation and Weak Solution

Consider the variational problem. Find u € V; such that
B(u,v) = /1 (v (z)0'(z) — kK*u(z)d(z)) dz — iku(1)5(1) = F(v), (2.8)
where ’ .
F(v) = / f(z)o(z) dz, (2.9)
holds for all v € V;. With ’
Vi =Va=H[,(0,1) := {v e H(0,1) Av(0) = 0}, (2.10)

this problem (2.8) is equivalent to the BVP (2.1)—(2.3) in the sense that for sufficiently smooth
data any weak solution of (2.8) is a “strong” solution of (2.1)—(2.3).
For test functions v € H!(0,1), the problem (2.8) is well defined if the data f lies at least in

the dual space
1
H™Y(0,1) := { f . |[fl-1:= sup lfo—fvl <oo}.

vert @ [Vl
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Continuity of the form B
Applying Poincaré’s inequality, we obtain the continuity estimate

IB(‘U,, U)I S Co(k)luhlvlly
with C, =1+ k + k2.

Existence-uniqueness of the weak solution

We first show uniqueness. It suffices to show that u = 0 is the only homogeneous solution
of (2.8). Hence, equation (2.8) hold with F(v) = 0 for all v. Then for v = u,

1
Bu, u) = / (' (2)8 (z) - Ku(z)i(z)) dz — iku(l)a(1) = 0.

0

Since the right-hand side of this equation is real, it follows that u(1) = 0, hence,
1 1
YweV: / uw'v'dz = k2/ uv dz.
0 0

Taking v = x, we have

1 1
0=u(1)—u(0)=/ u'da:=k2/ uzdz.
0

0

Assume now fol uz"dz = 0 for some natural n, then partial integration yields

1 ! /1 n+1 k2 ! +2
= — n = ——— 7 .
0= n+1/0“x dx (n+1)(n+2)/(,mc dz

It follows by induction that

1
0=/ uz’® dz, s=13,5,....
0

Since, as a consequence from Miintz’s theorem [14, p. 45], the set
span {z*|s=1,3,5,...}

is dense in L?(0,1), we conclude that u = 0.
For the proof of existence, we observe that for the form B, a Gardings inequality

Re (B(u, u)) + Cllul® 2 [lull} (2.11)

holds for C = C(k) = 1 + k%. We then have (see, e.g., [15, p. 194]) the alternative statement:
either there exists a nontrivial solution of the homogeneous problem Lu = 0 with Dirichlet
data 0, or a solution of Lu = f with Dirichlet data 0 exists for every sufficiently regular f. Since
uniqueness has been proved, existence follows. The proof is completed.

REMARK 2. As in the strong case, we remark that existence-uniqueness holds obviously also for
the adjoint form

B*(u,v) = /01 (v (2)7'(z) — kKPu(z)v(z)) dz + iku(1)(1).



14 F. IHLENBURG AND I. BABUSKA

Stability in H!-norm and Babuska-Brezzi-constant
Stability in the weak case f € H~1(Q) is concluded from the following theorem.

THEOREM 1. Let V = H(,(0,1) and B: V x V — C as defined in equation (2.8). The Babuska-
Brezzi stability constant

B
v := inf sup [B(u, v)|
u€Vyev |u|1|v|1

is of order k~!; more precisely, there exist positive constants Cy,Ca not depending on k such

that
C1 c2
—_—< < ==, .
L S1S T (2.12)

PROOF. Let us first proof the left inequality of (2.12). We will show that for any given u € V
there exists an element v € V' such that

o
|B(u,v)| > E|u|1 |v]1. (2.13)
Let u € V be given. Define v := u + z where z is a solution of the problem
YweV: Bw,z) = k*(w,u). (2.14)

The solution z exists and is uniquely defined. Furthermore, since u € H(0, 1), z is a solution of
the BVP (2.1)~(2.3) with data k?u, hence z = k? fol G(z, s)u(s) with the Greens function G(z, s)
from equation (2.4). Then

|B(u, v)| 2 ReB(u,v)
= Re (B(u,u) + B(u, 2))
= Re (B(u, u) + B(u, 2) + k?(u, u) — k*(u, u))
= ReB(u,u) + k*|lu)® = |ul}.

Now, if we show that
C
|u|1 Z —k— |’U|1, (2.15)

we have proved inequality (2.13) and the inf-sup-condition follows.
To obtain inequality (2.15), integrate by parts the Green’s function representation of z,

1
2(x) = k? (H(m,l)u(l) - /0 H(z,s)u'(s) ds) , (2.16)

where s
H(z,s) = / G(x, ) dt.
0
Differentiating this equation and taking absolute values, we get by triangular inequality
1
(@) < K (IEate Dl )| + [ V(oo (9] ds
0
< K2 (|Hp(z, 1)] + | Hall) uly
By direct computation, |Hy(z,1)| < 1/k, |Hz| < 1/k, hence,

|zl < 2k|ul;.
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Consequently,
vl < luly + |21 < (1 + 2Kk)|uls
and, finally,
july = Zpols
k

for k > 1. Together with equation (2.15), this validates the upper bound of the B-B-constant.
To prove the lower bound, it is sufficient to find some function 2,(z) € V for which

|B(20,v)| _ C
Vy: —m————= < —lvlh.
Izoll ~ k | |l
Consider the function .
sinkzx

70(2) = p(z) —
where ¢ € C*(0,1) does not depend on k and is chosen such that
20(0) = z0(1) = 2,,(0) = /(1) = 0. (2.17)

We further require
|zo|1 >«

for some a > 0, not depending on k (take, e.g., ¢(z) = z(z — 1)2). Then
|B(zo,v)} _ 1
YWweV: ———= < —|B(z,v
oo < |B(zo,0)
and with equations (2.17), we obtain by partial integration

1
YoeV: B(z,,v)= ——/ (22 + k%z,)5.
0

Direct computation shows that

20 4 kP2, = " %ﬁf + 2¢'(x) cos kz.
Define .
u(z) := / (25(s) + k%2,(s)) ds, (2.18)
0
then

1
|1B(20,v)| = U(l)ﬁ(l)—fo u(z)?'(z) dz| < (ju(1)] + [ul)vl:.

On the other hand, integrating zy parts in equation (2.18), it is easy to see that

1
[6(1)] < 21"l

and ]
lull < £ (1" loo + 211¢"lloo) -

Hence, there exists a constant C such that

= Q

(le(D)] + Nlul) <
Consequently,
YweV: |B(2,v)] £ % |v]1
and the proof is completed. ]
From general theory [16, p. 112] we then have the following corollary.

COROLLARY 1. Letu € H1(0,1) be a solution of the variational problem (2.8). Then the stability

estimate
|ulx £ Ck|f|-1

holds for constant C' not depending on k.



16 F. IHLENBURG AND 1. BABUSKA

3. FINITE ELEMENT SOLUTION

Following preliminary definitions, we state approximability of the exact solution as a direct
conclusion from the approximation properties of the finite element space and stability (3.1). We
then study the conditions for discrete stability and quasioptimal error estimates in the asymptotic

range.

After that, we proceed to the study of the finite element solution in the preasymptotic
range (3.2). We show the inf-sup condition and prove the main theorem, stating an error es-
timate in H-norm with assumptions on the magnitude of hk only. The section is concluded with

some comments.
3.1. Approximability and Quasioptimal Error Estimate

Notation

Let on  a uniform mesh of n + 1 nodes

LY

Xh={:c]-=—ﬁ,j=0,1,...,n}c[0,l] (3.1)
be given. The stepsize is h = 1/n. The intervals [z;_1,x;] are called finite elements. We define
the subspace Sx(f2) C H(9) as the set of all functions u € H(Q) such that the restriction of u

to any element [z;_1,z;] is a linear function. We further define the subspace
W, = Sh[O, 1) = {'U c Sh(o, 1),’0(0) = 0} .

A function u € V, is called the finite element solution of the variational problem (2.8) if B(u,v) =

F(v) for all v € V.
Further, a function defined on X, is called a mesh function and will be referred to by sub-
script h. For a mesh function u = uy, we will denote left and right differences, respectively,

by
gig e ME) —uEie) e ul@ig) - u(zi)
hit1

L b

h;

In the linear space of mesh functions, an inner product in L2-analogy is defined by

(fargn)n =R £i9;.

i=1
We will denote the discrete L2-norm by || - ||. The discrete analogon to the H!-seminorm is given
by
N2
lunlf =R |diual .
i=1

Note that for any piecewise linear function u with nodal points on X3, we have |u|; = |upli, i.e.,
the discrete and exact H'-norms are identical. We will use the discrete Dirac symbol defined as

1, if i = j,
bij := e
0, ifi # 3.
Approximation properties of S;((2)

It is well known that in one dimension, the best piecewise linear approximation in H!-seminorm
to a function u € H(R) is the interpolant u;. Furthermore, if u € H?(Q), there holds the
following lemma.



Solution of the Helmholtz Equation 17

LEMMA 2. Let u € H%(0,1) and u; € Sx(0,1) be the piecewise linear interpolant of u. Then

2
ot ol < -l < (2) ol (3:2)
inf lu—v)=u—ur|; < (-}1) fuj2, (3.3)
vES) T
h
o=l < (2) lu=uls. (3.4
PROOF. See, e.g., (17, p. 45]. i

H'-approximability for Helmholtz problems now immediately follows.

THEOREM 2. Let u € H%(Q) be the solution of the variational problem (2.8)—or, equivalently,
of the BVP (2.1)-(2.3)—for given data f € L?(Q). Then

ju—urh < 20+ B

Proor. Combine Lemmas 1 and 2. ]

We now reproduce a quasioptimal error estimate shown by Douglas et al. [6], paying special
attention to the constants involved in the estimates. The proof is detailed in the Appendix.

THEOREM 3. Let f € L?(0,1) and let u € H2(0,1) be the exact and ug. € Sy[0,1) be the finite
element solutions of the BVP (2.1)-(2.3), respectively. Assume that h and k are such that the
denominators of the constants in the following estimates are positive.

Then
|lu —uge|s £Cs vien‘gh |u — vy (3.5)
holds with 12
2
L2 (1+(§$ )
$T 21252 2y1/2
(3 —6C?k2h2(1 + k)?)
d
an o 9
YT a2+ ER
Furthermore,
lu —ugely < Cs (L +k)h||f]|- (3.6)
PrOOF. See Appendix A. (]

Note that, for the denominator of C; to be positive, the magnitudes of (hk)?, h2k® and h%k*
must be small. The term (hk/27)? in the numerator can then be omitted. Hence if h and k fulfill
the assumptions of the theorem, the finite element solution converges like the best approxima-
tion. It will be shown by numerical experiment that a bound on k2h is also necessary for this
quasioptimal behavior.

It is another question whether the assumptions of the theorem are necessary to bound the finite
element error by some finite magnitude (like, e.g., an a prior:i given tolerance). The following
simple computation indicates that this is not the case for high k. Let hk? < a for some a > 0.
Then h < a/k? and

1
lu —ugely < Co(l + k)5 1 £l;
hence, the error estimates of the theorem tend towards 0 (while they have only to be bounded
for practical purposes) as k is increased.

CAMWA 30-9-C
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3.2. Stability and Error Estimation in the Preasymptotic Range

Global FE-equations and discrete fundamental system

After assembling the local equations (2.8) and multiplying the whole set by h, we arrive at a
set of linear equations for the mesh-function up = ufe|x,,:

Lhuh =Th. (37)

The discrete operator L; can be written as an n X n-tridiagonal matrix

25(t) R(t)
R(t) 2S(t) R()
Ly = (3.8
R(t) 28(t) R()
R(t) S(t)—it
with ) )
R(t):—l—%, S(t):l—%, t = hk
and
ri = h(f,4;), (3.9)

where ¢; € S,(Q) is the usual hat-function.

REMARK 3. The product t = kh is a measure of the number of elements per wavelength (of
the exact solution). In particular, if the stepwidth is such that ¢ = T for integer I then exactly
{ elements are placed on one half-wave of the exact solution.

Discrete wavenumber and Green’s function

The fundamental system of equation (3.7) is
B, = {e—ik’z,eikl‘t |z € {-Z—l;j=0,1,...,n}}, (3.10)

where £’ is a parameter yet to be determined. To this end, we solve any of the “interior” equations
in the point z; = j/n, 1 <j < n:

R(t)e™* =Dk 4 98(1)e* 1P 4 R(t)e™*' G+DA = 0, (3.11)

With
A= eik' h

k]

equation (3.11) has the solutions

S(t) S2(t) (*) complex conjugate, if I%%l <1,
M2= "R T\ R (3.12)
(t) ®) (%*) real, if '%%) >1.

From the definition of A, we see that the discrete wave number k' is either real (in case (*)) or
pure complex (case (**)). Physically, case (*) describes a propagating wave whereas case (**)
describes a decaying wave (3]. For h < +/12/k, one obtains always the complex conjugate solution,
case (*).
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The discrete wavenumber k' can be formally computed in terms of ¢ = kh. From equation
(3.12), case (x), we get

S(t)
cos(k'h) = "R (3.13)
and hence,
y_ 1 _5@)
K= harccos< R®) ) (3.14)
Consider the Taylor expansion
no_ S(t)
Eh = arccos( R®)
L (kh)3  3(kh)® 7
= kh N + 610 +0((kh)).
Hence, for fixed k,
k3h?

From the fundamental system Fj, the discrete Green’s function is constructed (see [18,19] for
details). We obtain

1 sink’z (Asink’s + cos k's), z <s,
Ghp(z,8) = — 7 . . (3.16)
hsink’h | sink’s(Asink'z + cosk'z), s<z <1,
with ) ) /i3 .
t*sink’ cosk’' +iv12v12 -t
A= 12 — t2 cos? K’ ' (3.17)
Obviously, |A| is bounded independently of k if t = hk < a < V/12.
The discrete solution up(zn) = h Y _; Gh(zh, s;)ra(s;) is
1 !
— ! el 7 .
up(zy) = Tk cosk hl;rj sink'hj+
(3.18)

j=l+1 i=1

n n
sink'hl Y cosk'hj+Asink'htzr,-cosk'hj) ,

for0<i<n.

3.3. Inf-sup-Stability Condition and Preasymptotic Error Estimate

In this section, we compute the Babuska-Brezzi stability constant of finite element solutions
on uniform mesh using the discrete Green’s function. Existence-uniqueness of the FE-solution
then follows with an assumption on the magnitude of hk only. We then show discrete stability
with respect to L2-data and proceed to an H!-estimate of the finite element error.

Discrete Babuska-Brezzi constant and stability

The discrete inf-sup constant is of the same order in k as the constant on the full space.

THEOREM 4. Let V;, = Sp[0,1) C H(0,1), and let B : V;, x V;, — C be the sesquilinear form
defined by equation (2.8). Then, if hk < 1, the Babuska-Brezzi stability condition

. |B(u,v)|
inf su =, >0 3.19
uGthe‘I/:. lul1|vl1 Th ( )




20 F. IHLENBURG AND 1. BABUSKA

holds and there exist positive constants C; and Cs, not depending on k or h such that

PROOF. The proof is similar to the infinite-dimensional case (see Appendix B). [}

REMARK 4. We recapitulate that, for f € L?(0,1), both approximability (Theorem 2) and the
discrete stability condition hold under the assumption the hk is sufficiently small. It then follows
from a fundamental theorem {3, p. 187] that the FE-solution exists and is uniquely determined.
We emphasize that this result is obtained by restricting the magnitude of hk only (compare to
the restriction of hk? to show existence-uniqueness in Theorem 3!).

A stability condition for the finite element solution with respect to L?-data is given in the
following lemma.

LEMMA 3. Let ug, € V), be the finite element solution to the variational problem (2.8) for given
data f € L?(0,1). Then, if h is small such that hk < 1, there exists a constant C not depending
on h and k such that

lugelr < CI£Il-

PROOF. Since uy. is piecewise linear, we have

n 1/2
' i 2
lufell = { B D (dPuse) :

i=1

Write up, 1= ufe| X in terms of the discrete Green’s function as

n
U; = h E Gij’l"j,
i=1

then n
diu=hY_ d'G,r
i=1
and
|d*u| < ||d*Gl |17 (3.20)
holds with

n 1/2 n 1/2
|d*G)| = (hZ(d'iG.j)2> , el = (hzr,?) . (3.21)
Jj=1

=1
From r; = h(f, ¢;) it is easy to see that there exists a constant C; such that
(]l < C1h®| fII-
The derivatives of the Green'’s function are
1 cos (L,‘,"(Zi - 1)) (Asink's; + cosk’'st), 1<,
le.[ = TR
h? cos 57

sink’s; (Acos (#(m - 1)) —sin (%"(21 - 1))) , 121

Obviously, h2 |d‘G.¢| is bounded provided that k'h < a < n. From the Taylor series expansion
of k'h, equation (3.15), we conclude that such a exists for sufficiently (say, kh < 1) small kh.
Hence there is a constant Cs such that

L C
Vi,j: |d'G;| < h—:
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Then also
. ; Cs
Vi: &Gl < 43
and the statement follows from equation (3.20) with C = C;C5. The proof is completed. 1

We are now in a position to state the error estimate.

THEOREM 5. Let u € H%(0,1) be the exact solution of the variational problem (2.8) with data
f € L%(0,1) and let use € Sh[0,1) be the finite element solution of (2.8). Then, if hk < 1, the

estimate
hk hk\2
lu — ugel; < (7 +C ( ) 1+ k)) I£I (3.22)

s
holds with a constant C not depending on h and k.

PROOF. Let uy € V = S[0,1) be the interpolant of u and define z € V}, by z := ug, —us. Then,
by Vix-orthogonality of the error and linearity of the form B,

Yvoe Vi: B(u-—urv)=DB(zv).

On the other hand, it is easy to see by partial integration that ((v — us),v’) =0 for v € V},, and
therefore

B(u — uy,v) = k*(u — uy, ).

Hence, z is a solution of B(z,v) = k? (u — uz,v) for all v € V}, and from Lemma 3 we have the
estimate

2|1 < CE%|lu — uy].

Then, by triangular inequality,

[u —ugelr < |u—urly + |2
< lu—u1|1 +Ck2||u—u1||. (3.23)

We now invoke the approximation properties of the space Vj, from Lemma 2 to obtain
h k2h?
le]y < (— + C_z) |ul2,
1 ™

and the proposition follows from Lemma 1. 1

COROLLARY 2. Ifhk <1, then for k > 1

lu —ugel1 < Ck vien.‘g;. |lu — v, (3.24)

where C does not depend on h, k.

ProoF. Continue inequality (3.23) as

|u — ugely < (1 + C1k%R)|lu — ur|; < Ck inf |u—v|y
f vEV,

taking, e.g., C = (1 + Ca) with hk < a < 1. 1
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3.4. Comments

If the exact solution to the Helmholtz equation is a sinusoidal wave with frequency k, i.e.,
u = Asinkz + Bcoskxz where A, B do not depend on k, then there are constants C;,Ca such
that

In this case, the estimate of Theorem 5 leads to

&) = % < C1hk + Cok®R?, (3.25)
1

i.e., the relative error in H'-norm is bounded by k3h2. The first term in equation (3.25) is the
approximation error. This is a local property that can be found from the analysis on any element
separately.

The second term is due to numerical pollution [13]. It is a global property of the finite element
solution to Helmholtz problems. Note that the pollution term is of the same size as the phase
lead of the finite element solution (see [8] for a detailed discussion of this aspect). The topic of
numerical pollution in the context of a posteriori error estimation is addressed in [20-22].

Note that the preasymptotic estimate in the theorem is a generalization of the asymptotic
statement in Theorem 3. Indeed, taking out kh in equation (3.22), we directly get equation (3.6)
from Theorem 3

lu—usely < Clu—urly <Ch(L+k)[f]l

if k%h is small. Both error estimates hence lead to the conclusion that the stability constant
C, does not depend on k if k?h is bounded. We will show by numerical experiment that this
conclusion is sharp, i.e., the constant C, grows with k if k?h is not restricted.

The assumption of uniform mesh is due to technical necessities of the proofs for Theorems 4
and 5. All statements of this section should hold for quasiuniform mesh as well.

4. NUMERICAL EVALUATION

Throughout this section, we consider the variational problem (2.8) with constant right hand
side f(z) = —1.

e
1Y

Relative error
©
=

o \ \\ \ |
0.02¢} .
. n(10} ;1(402 nglOO) g(400) .
1 100, 1000.
Number of elements

Figure 1. Relative error of the best approximation in H!-seminorm and predicted
critical numbers of DOF for k = 10, k = 100 and k = 400.



Solution of the Helmholtz Equation 23

Error of the best approximation

Consider in Figure 1 log-log-plots of the relative error é, := |u — ur|1/|u|; of the best approxi-
mation in H!-seminorm for different k. All error curves decrease with constant slope of —1. Note
that the error stays at 100% on coarse mesh and starts to decrease at a certain meshsize. We are
interested in the point where the descent starts. More precisely, we seek the critical number of
degrees of freedom according to the following definition.

Define—for any fixed k and f—the critical number of degrees of freedom (DOF) as the minimal
number N(k, f) of DOF for which

1. é(n,k) <1 and
2. &(n, k) is monotone decreasing with respect to n
for n > N(k, f).

For the best approximation, the critical number of DOF is determined by the rule that the
stepwidth of interpolation by piecewise linears should be smaller than one half of the wavelength
of the exact solution, i.e., hk < w. The critical point n,, computed accordingly from

N = [—] (4.1)

is plotted for different k. It coincides well with the start of convergence on all curves.

The figure also shows that the error of the best approximation is controlled by the magnitude
hk. For illustration, the points that are computed from hk = 0.2 are connected. The connecting
line does neither increase nor decrease significantly with the change of k.

s

0.02%1

0.029 |

;;;;;
IR ERRNE]

0.0289

Relative Error

0.0288 ¢

0.0287¢}

0.0206 |

200 300 400 . 500
Wavenumber k

Figure 2. Relative error of the best approximation in H!-seminorm computed for
k=1...500 with stepwidth h determined by hk = 0.1.

For more detailed observation, the relative error of the best approximation, computed for all
integer k from 1 to 500 and for hk = 0.1, is plotted in Figure 2. The error oscillates with decaying
amplitude around the horizontal line

|8a]1 = 0.02887.

With |u|z/|u|1 = k for sufficiently large k, the upper estimate from Lemma 2 is

0.1
[€als < — = 0.03183.
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k=10, n=10
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Figure 3. Phase lead of the Finite element solution for k = 10, n = 10.

Discrete wavenumber

Unlike the best approximation, the finite element solution is, in general, not in phase with
the exact solution. The discrete solution has a phase lead with respect to the exact solution.
This is shown in Figure 3, where the real and imaginary parts of both solutions are plotted for
k=10, hk=1.

On uniform mesh, the relation

o _S(t)
cosk'h = —m,
where t = hk and the right-hand side is a rational function of t—equation (3.13), is used for com-
putation of the discrete wavenumber that governs the periodicity of the finite element solution.
In Figure 4, the functions y; = —S(t)/R(t), y2 = cost and |ys| = 1 are plotted. At t, = v/12, the
function y; reaches absolute value 1; the numerical solution switches from the propagating case to
the decaying case. The value t, corresponds to a cutoff frequency for the numerical solution [23].

For fixed k, the convergence k' — k is visualized by cosk’h — cost = coskh as h — 0. The

curves begin to deviate significantly at about hk = 1.
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Figure 4. Convergence of discrete to exact wavenumber via comparison of cosk’h =
~S(z)/R(x) to cos(z) for = = kh.

Error of the finite element solution

In Figure 5, the relative error of the finite element solution in H!-seminorm is plotted for
different k.

NN
oorf \\ N

. =3 k=10 . k=50 k=100
10. 100. 1000.
Number of elements

Figure 5. Relative error in H1-seminorm: Finite element solutions for k = 3, k = 10,
k =50 and k = 100.

For low k (k = 3, k = 10), the finite element solution converges as the best approximation.
For high k, the relative error oscillates above 100% before a critical value of degrees of freedom
is reached. The decrease then first occurs with a rate greater than —1 in the log-log-scale but
becomes —1 for small h. The relative error generally grows with k along lines hk = const. Unlike
the error of the best approximation, the error of the finite element solution is not controlled by
the magnitude of hk—see also Figure 6 and Table 1.

Asymptotic stability and quasioptimality

In Figure 7, the relative error of the finite element solution and the relative error of the best
approximation are displayed in one plot. To enhance the quasioptimal stability estimate of
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Table 1. Number of elements per wavelength needed for accuracy of 10% in H!-
seminorm.

3 100 200 300 400 600 800 1000
# of elements 38 57 63 82 94 107 120

1} 91
E 0.1 el=0.1
2
0.001 |
100, 1000. 10000, 100000.
Number of elements

Figure 6. Relative error in H1l-seminorm: Finite element solutions for k = 100,
200, 300, 400, 600, 800 and k = 1000.

kA2¢h=0.1

0.001 § k=50
204
10, 100, 1000, 10000, 100000.
Number of elements

Figure 7. Relative error of the finite element solution and the approximation in
H1l-seminorm for k = 10,50, 100 and k = 200. Meshes with k2h = 0.1 or k2h = 1,
respectively, are connected on both curves.

Theorem 3, the lines kA = a = const are plotted for @ = 1 and a = 0.1. We observe that along
these lines the ratio of the errors does not depend on k (the distances between both curves in the
log-log-plot do not grow). This is exactly in accord with the quasioptimal estimate stating that
the ratio es./epq is bounded by a stability constant C, independently on k, h. In Figure 8, the
ratio efe/epa, computed with the restriction k2h = 1, is plotted for k from 1 to 200. Obviously,
the ratio does neither decrease nor grow with increasing k. On the other hand, the error ratio
does depend on k on all lines hk? = a with 8 < 2. In particular, C, is increasing with k on the
line defined by hk = 1, as shown in Figure 9.
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Figure 8. Relation efe/ep, of the finite element error to the minimal error H 1
seminorm with k2h = 1.
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Figure 9. Ratio ef./ep, of the finite element error to the minimal error H 1_seminorm
with hk = 0.1.

Preasymptotic stability and error estimate

We have seen that the assumption on k?h is necessary for quasioptimal convergence in H!-
seminorm of the finite element solution. However, it is not necessary to bound this ratio for the
practical purpose of limiting the error of the FE-solution at finite range. Indeed, C; grows with k
on the line of constant relative error of the FE-solution (Figure 10).

According to Theorem 5, the relative error is bounded at any range by the magnitudes of h2k3
and hk. In Figure 11, the relative error of the finite element solution for k& from 1 to 1000 on
meshes with h = 1/(k%2) is shown. We observe:

e For low k (1 < k < 50), the relative error decreases rapidly with k£. In this range, the
FE-solution is still close to the best approximation (hk? = 5.48 for k = 30) and hence, the
term hk is the significant member in the estimate (3.40).

e For large k (k > 100), the error is bounded by é = 0.05. The term h2k? is leading in
estimate (3.40).

Consider the effect on the results of applied computations. To this end, we write the estimate
of Theorem 5 in the form
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Number of elements
Figure 10. Stability constant C; (vertical lines) at relative error of = 20% for k = 10,
k =50 and k = 100.
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Figure 11. Relative error of the finite element solution in H!-seminorm with con-
straint h2k3 = 1 for k = 1,1000, 1.

lel: < (a+C1 +k)a?) ||£] (4.2)

with a := hk/7. Let o = 0.1, i.e., the wavelength is resolved by 20 elements. Then for k£ = 10, we
have ka? = 0.1: both terms in equation (4.2) are of the same magnitude, and hence, the phase
lead does not affect the error significantly. Consequently, no negative effects should be observed
in benchmark tests. However, for high wavenumber (say, k¥ = 100) the second member equals 1
for the same resolution & = 0.1 and hence dominates the estimate. The pollution effect is still
more significant for lower resolutions like a = 0.2 or a = 0.5 (cited as “acceptable resolution” or
“limit of resolution,” respectively, in [3]). For k = 10, the magnitudes o = 0.2 and ka? = 0.4 are
still of the same order for acceptable resolution but differ considerably for the limit of resolution
(o = 0.5 and ka? = 2.5). For high wavenumber (k = 100), the second member of the estimate
is clearly dominating for both resolutions: we have oo = 0.2 vs. ka® = 4 and, for the limit of
resolution, a = 0.5 vs. ka? = 25.

Finally, we demonstrate that also the critical number of DOF for the finite element error is
governed by the magnitude of h2k3. In Figure 12, the numbers
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Figure 12. Relative error of the finite element solution in H!-seminorm and predicted

position of the “knee” {critical Numbers of DOF) for k = 10, 40, 100, 400 and

k = 1000.
[k-3
No = ﬂ (43)

are plotted for different k. The predicted critical number of DOF is close to the start of con-
vergence of the finite lement solution. The formula (4.3) is motivated as follows. Assume that
the solutions are given by u = sinkz and up, = wus.|x, = sink’z), and consider the error
in the Lo,-norm. Then, if the phase lead &' — k is smaller than /2, the maximal difference of
amplitudes |sin kzy —sin k’zy,] occurs at the end of the interval [0,1]. For z = 1, the error of the
finite element solution is

ink —sink’| =2
Isink — sink/| 3

k—k"

kE+ K '
COos 2 sin

Since || sin kz|jc = 1 for sufficiently large k, the relative error in L°-norm is smaller than 1 if

k—k

1
. <1
sin <3

or, equivalently,
E—FK <

~ 1.

w| 3

With this, equation (4.3) follows from the Taylor expansion equation (3.21).

5. CONCLUSIONS

The numerical solution of the Helmholtz equation with the h-version of the FEM is studied
on a one-dimensional model problem. New analytical statements that hold in the preasymptotic
range of discretisation are shown. The analytical study is completed with results of computational
experiments.

This investigation of the Galerkin finite element method on a one-dimensional model problem
for the Helmholtz equation reveals:

o The finite element solution is stable given only restrictions on the magnitude of hk.
e The relative error in H!-seminorm of best approximation in the finite element subspace
is controlled by a term of order hk. If k%h is small, then the finite element solution is
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quasioptimal, i.e., equivalent to the best approximation; the equivalence relation does not
depend on k.

o In the preasymptotic range, the relative error in H'-norm of the finite element solution is
governed by the term h2?k3, and hence, can be controlled restricting this magnitude.

e The Babuska-Brezzi stability constant is of order k~! both in the continuous and the

discrete case.
e The restriction of hk? is not only sufficient, but also necessary for quasioptimality of the
finite element solution in H!-norm.

If hk? is small, then the finite element solution is in the asymptotic range of convergence where
it, is close to the interpolant of the exact solution and hence is quasioptimal, i.e., the finite element
error is proportinal (independently of k) to the interpolation error. In the preasymptotic range,
the difference between the finite element solution and the interpolant (the phase lead of the finite
element solution) is the dominant part of the finite element error.

In Part II, results are presented for the h-p-version of the Galerkin FEM for Helmholtz prob-

lems.

APPENDIX A

PROOF OF THEOREM 3. Denote e := u — us.. Then e lies in the Hilbert space V C H(0,1)
and, consequently (cf. Remark 3), there exists z € V' such that

YoeV: B(v,z)=(v,e).

In particular, B(e, z) = (e,e) for v =ce.
Further, the error is B-orthogonal to the discrete test space V3, := Si[0, 1]:

YweVy: Be,w)=0.
Then, for all w € V4,
el = (e.¢) = Blevz - w)
= [¢ G0y - B [ =) - ihe(a) GID —wD)
<N (z=w) €'l + Bz — wll llell + klz(1) — w(D)} e(1)]-
Apply the inequality |v(1)| < v2||v||'/2||v||*/? which is true for all v € V to obtain

klz(1) — w(1)| le(D)] < 2k| (2 = w) |2 ]l€/*/ ]|z — w]|/?|lel| /2
<Kz~ wll llell + Il (z = w)' I 1€'ll, (A.1)

where the inequality 2ab < a? + b2 has been applied. This gives, for all w € Vj,,
llell? < 2 (It (z — w)' Il llell + K2}z — wl] flell) -

In particular, we may apply Lemmas 1 and 2 for w = 21 € V), (the piecewise linear interpolant
of z) to obtain

el < (I = = ex) €'l + K2z — e )
B, B2
<2+ B2IT el + K551+ ) lel?).

Divide both sides of the inequality above by the common factor |le||, then

llell < CL(1+k) Rl (A.2)
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holds with
Cl = 2
T -2+ k)ER)x

under the assumption that k, h are such that the denominator of C; is positive.
Next, from B-orthogonality of the error to elements from V},, we have

B(e,e) = B(e,u — ug.) = Be, u),

and hence,
YoeV,: Blee)=Bleu—v).

Thus, for allv e V},

/ e's — k? / ez — ikle(1)|? = / ¢ @=D) — 2 / (=) — ike(1)(@(1) — 5(1))
and therefore,

e < K2llell? + kle(1)[* + le'll i (w — v)' | + k2Jlell lu — vll + kle(1)] u(1) — v(1)|

<
< K2llel® + 2klle’|| lell + 20le’[| fi(u — v)'l| + 2K]le] flu — o],

where the terms in z = 1 have been estimated as in (A.1). We now use the e-inequality to get
the estimates

1
2k [le'll llell < 7 lle’ll* + 4k2|lell?,

1
2Mle'lH (e = v)'ll < 7 1) + 4l (u = v)'I1%,
2k [lell flu — vll < k2 [lell + K*|lu ~ ol|?.

Introducing these estimates into the inequality leads to
1
Voe Vi |[l€]* < 6k%el® + 5||€'l|2 +4f|(u — o) + K2 flu — o2 (A.3)

Then, using the intermediary result (A.2) and the approximation results from Lemma 2 for
v = uy, we get

1 h 2 h 4
1 <6+ PO +4 (2) @ kPP 4R+ R? (2) 11,

and hence,

(% —6k2(1 + k)Zthz)W) le'll < (2) (1 + (g)z) " R+ B £

™

and the statement of the theorem follows. The proof is completed.
To prove the corollary, introduce equation (3.4) from Lemma 2 to (A.3).

APPENDIX B

PRrROOF OF THEOREM 4. We show that for any given u € V}, there exists some v € V}, such that

C
|B(u, v)| 2 Il 1V}
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Hence, let u € V;, be given and define v := u + z where 2z € V}, is a solution of the variational

problem
YweV,: Bw,z) = k*(w,u). (B.1)

Since V}, is a Hilbert space, the solution of (B.1) exists and is uniquely defined. As in the
continuous case, we will now prove that

C
luly > —|v)x

using the Green’s function representation of z:
n
Zi = Zh(x,') = hz G,;j?‘j, (B2)
=1
where
Gij := Gu(zi,8;); 1 :=rn(s;).
Summation by parts in equation (B.2) yields
n .
Z; = Hinrn - Hil'ro — hz: HideT (B3)
j=1

with )
DJH,'.=G"J‘, j=1,...n—1. (B4)

Since the mesh function H is defined by equation (B.4) up to a constant, we are free to choose
Hil =0.
Let us now take the left differences of z), in some fixed point i = I:
n .
dz=d'Hnrn—hY_d'H;d'r. (B.5)
=1
Then, applying the Schwarz inequality, we obtain the estimate

|¢'z| < |d'Hon| Irn] + | Hall ]2
< (|d'Hon| + | Holl) |1 (B.6)

The right-hand side of the variational problem is by direct computation
1
1‘_7‘=§k2h2(u]'._1 +4u; +‘U.J'+1), i=1,...n-1

hence,
7)1 < Ch%k?uly (B.7)

where C is a constant of order 1. We now turn to estimation of the magnitude |d'H.,,| + | Hz |-
From equation (B.4), we obtain after summation over j

j~1 ji-1
Hy-Hy=h) D'H.=h) Gy
I=1 =1

and consequently, since H;; = 0,
i—1
Hi; =h)_Ga. (B.8)
=



Solution of the Helmholtz Equation 33
Taking left differences, we obtain

i
d'H;=h)_ d'G.. (B.9)

The derivatives (as left differences) of the discrete Greens function are

) 1 d*sink’zy, (Asink's; + cosk's;), zh < s,
e P (B.10)
hsink'h | sink’s; (Ad*sink'zy + d* cosk'zp), zp > s
We substitute
- 2 k'h k'h
T ot ! I —- ;o S
d*sink'zy = hcos( 2 (2 1)) sin ==,
: o 2 (KK, . . k'h
d* cosk'zy, = 5 sin| = (2i — 1) } sin 5
to obtain
. 1 cos (ﬁ(Zi ) (Asink’s; +cosk's;), i<,
h?cos 55t | sink’s (Acos (%(2 - 1)) — sin (Th(2z - 1))) , 1>l

Then, for j >i+1,

j-1 i i

. 1 k'h

i _ . s ’ ’
[E=1 d'G,= 7 oos K k;h (cos (———2 (2¢ 1)) (A ,E=1 sink’hl + lél cosk hl)

+ Jz_:l sin k'hl (Acos (’%h(zi - 1)) ~sin (%(% - 1))))

l=i+1

1 Kh,_.
= hZcos k2h sin k;h (cos (7(22 - 1)))

/ ; ! I /
(As1nk—hsin—(z+;)kh+sin lk2 cos ————-——(Z+2l)k h)

. (G-VDk'h . k' k'R, (i+1)k'h
+ (sm ) sin 2 sin 2 sin 5

X (Acos (F;-(Zz - 1)) —sin (1%@(% - 1))))

«_Di ,

~ h2?sink’h
since |A| and hence the expression in the brackets are bounded. With the assumption that kh
and hence k’h is small there exists Dy > 0 such that

kl2 h2

sink’'h = k'h (1 -

n 1/2
A (hZId"H.J-I"’)
i=1

{igel]

o (o))

:i:) > Dyk'h,

then

j-1
Ry d'Gy

nMu'

CAMWA 30-9-D
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and with the previous inequalities, we obtain

1/2
3/2
1Bl < /2 (Z i ) < W <

h8k"2 hi/2kt — hzk’

By similar computation, we can show that for any [,1 <[l <n

|dl nl - hzdz - hgk,’
hence,
H, dH,l < =— D
| He|l + maxl Hyl < h2K’

where D = D3 + Djy.
Returning now to equations (B.5) and (B.7),

1/2

n
jeh = | B ld'4P2

i=l1

< l
(a1 ol + )

D
< h2 x Ch?k?|ul,

k
<kCD (k,) 1.

From the Taylor series expansion (3.15), we see that

K _ 1+ k*h?  3k4h?
k 6 640

is bounded for sufficiently small kh. Hence, there exists a constant F not depending on h and k
such that
|z}1 < Ek|ul;. (B.12)

We then have
I’Ull = |u -+ 2'1 < (1 + Ek)|u|1,

hence, there exists, for sufficiently large k, a constant F such that

F
uly > ;lvll

and left inequality of the statement follows from the definition of z and the Gardings-type in-
equality (2.11).

To prove the right inequality, we construct, in analogy to Section 2, a function z, for which
continuity holds with Ck~!. Consider the function

Z(z) = ¢(z) w(z),
where p(z) € C*°(0,1) and

sink'z

wiz) =
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is a fundamental solution of the discrete system equation (3.7). Let z,(z) € V}, be the piecewise
linear interpolant of Z(x) on X;. Again we assume that ¢ does not depend on the parameter k
and is selected such that

9(0) = p(1) = ¢'(1) =0,

and there exists a > 0 such that
Izoll >

independently on k. Then

B(z,,v 1
YveV,: ||(—§°|;—)—I < E|B(zo,v)|.
o

Turn to the estimation of |B(2,,v)| (we omit the subscript o from now on):

1 1
B(z,v):/ z'v'~k2/ 2v
0 0
n

n
S 2
= th’zd’v % hZ(zj_l +4z; + zj41)v;

=1 i=1

(let formally 2,41 := 2n_1). Summation by parts then yields

n

o k2 1
B(Z, 'l)) =—-h E (DJ (sz) + —6" (Zj-] +42; + Zj+1)> v; + E(zn——l'l—)n - Zoﬁo)-
Jj=1

The term outside the sum is O(h). Indeed, z, = 0 and

2

on1 = 9l1) ~ hg!(1) + /(1) + O(4?).

Consequently, since ¢(1) = ¢'(1) = 0, we have h™l2,_; = h7lp,_qw,_; = O(h). Hence,
omitting the terms O(h),

n

o k2
B(z, 'U) = —h Z (D](djz) + E (Zj_l +4z; + Zj+1)) Uj.
j=1

For arbitrarily fixed j, we write the second differences as

Di(dz) = D’ (& (pw)) = D’ (' p)wj-1 + p;d w)
= DI (d?)w;—1 + 2D pd?w + p; D (P w)

and the weighted sum as

zj—1 +42zj + zj41 = (pw)j—1 + 4(pw); + (pw);-1
= w;-1(p; — hyj + O(h?)) + 4w;p; + wjs1(p; + hej + O(h?))
=, (wj_1 + 4w, + U)j+1) + 2h2<p;~'w;» + 0(h2)).

Then, neglecting all terms that are O(h) we can write
S k2
DJ(dJZ) + E (Zj_l + 4zJ- + 2j+1) =

Pj I:DJ(dJ’U)) + —é- ('wj_l + 411)_7' + ’ll)j+1) + DJ(dJ(P)’LUj_l + 2D’<pd’w.
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Since w has been selected as a fundamental solution of the discrete system, the expression in
square brackets vanishes. We now define the piecewise linear function u as the linear interpolant
of the meshfunction up defined by

k2
Z (D" dz) + 3 (2j-1+4z; + Zj+1)> .

Then, on the one hand,

1
1B(z,v)| = u(1)5(1)—/0 u(@)?'(z) dz| < (Ju(1)] + [lul)ivls,

and on the other hand

_ o\ 1/2
i—1

n
lul = | A E h Z (D (P p)wj—1 + 2D pdiw)
\ i=1 \ j=1
n i_l . . .
= hz hz (=D (d?p)wj_1 + 2 (D" 'pwi—1 — w1 D))

\ i=1 j=1

Making use of the smoothness of the function ¢, we have for all j

o\ 1/2

DY p) = ¢"(jh) + O(h?),
Di7lo = ¢/((j - 1)h) + O(h),

and we obtain

lull < &Y~ (Ritwl (1" oo + (1¢/lloo + 2019 oo + O(B))°) .

i=1

where the function w = k~!sin k’z can be estimated by

lw| <

] b=

and the term O(h) does not depend on %.
By similar estimates for |u(1)|, we conclude that for sufficiently small A there exists a constant
C with

(lull + lu()]) < %

It then follows that

YoeVy: |B(z,v)] £ = v

and the proof is completed.
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