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Abstract 

The paper presents the basic ideas and the mathematical foundation of the partition of unity finite element method (PUFEM). 

We will show how the PUFEM can be used to employ the structure of the differential equation under consideration to construct 

effective and robust methods. Although the method and its theory are valid in n dimensions, a detailed and illustrative analysis 

will be given for a one-dimensional model problem. We identify some classes of non-standard problems which can profit highly 

from the advantages of the PUFEM and conclude this paper with some open questions concerning implementational aspects of 

the PUFEM. 

1. Introduction 

The aim of this paper is to present a new method for solving differential equations, the ‘partition of 
unity finite element method’ (PUFEM). We explain the mathematical foundation of the PUFEM and 
discuss some of its features. The most prominent among them are: 

(1) the ability to include a priori knowledge about the local behavior of the solution in the finite 
element space; 

(2) the ability to construct finite element spaces of any desired regularity (as may be important for 
the solution of higher-order equations); 

(3) the fact that the PUFEM falls into the category of ‘meshless’ methods; a mesh in the classical 
sense does not have to be created and thus the complicated meshing process is avoided; 

(4) the fact that the PUFEM can be understood as a generalization of the classical h, p, and hp 

versions of the finite element method. 
In this paper, we will mostly concentrate on the first of these four features. In particular, the 
one-dimensional example of Section 4 illustrates the fact that the PUFEM enables us to construct finite 
element spaces which perform very well in cases where the classical finite element methods fail or are 
prohibitively expensive. The success of the PUFEM in this example is precisely due to the fact that the 
PUFEM offers an easy way to include analytical information about the problem being solved in the 
finite element space. A similar example was analyzed in [15] for a problem with a boundary layer. 
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Again, the PUFEM permitted the construction of finite element spaces which account for the boundary 
layer behavior and thus led to a robust method in the sense that the performance of the method is 
independent of the actual strength of the boundary layer. An application of the PUFEM to the 
Timoshenko beam with hard elastic support can be found in [16]. 

The paper is organized as follows. The rest of Section 1 establishes that the two main ingredients of 
finite element spaces are local approximation properties and some interelement continuity. The 
PUFEM constructs a global conforming finite element space out of a set of given local approximation 
spaces-the precise construction is described in Section 2. Therefore, the PUFEM separates the issues 
of interelement continuity and local approximability and allows us to concentrate on finding good local 
approximation spaces for a given problem. In Section 3 we give a few examples of spaces with good 
local approximation properties for several differential equations. A detailed example of the PUFEM is 
presented in Section 4 for a one-dimensional model problem with rough coefficients. In Section 4 we 
construct local approximation spaces which reflect the rough behavior of the solution and show that 
they are robust. The numerical example of Section 4.3 illustrates the robust performance of the 
PUFEM. We conclude the paper in Section 5 with an application of the PUFEM to the two-dimensional 
Helmholtz equation and identify some open questions concerning implementational aspects. 

1.1. The finite element method 

The finite element method (FEM) for the solution of linear problems can be understood as follows. 
The problem is formulated in a weak form 

find u E 2: B(u, u) = F(u) Vu E 9 (I) 

where Z, 9 are Hilbert spaces with norms ]I - (IF, 11 . 1) o, B : Z x 5 H R is continuous and bilinear, and 
F : 9 H II2 is continuous and linear. Of course, in all problems of interest, the spaces 2, 9 are infinite 
dimensional. In the FEM finite dimensional subspaces %n C i?? (called the trial spaces), OJ C S (called 
the test spaces) of dimension n are chosen and the finite element approximation L+ is defined as the 
solution of 

find uFE E $Yn : B(u,,, u) = F(u) Vu E 9n . (2) 

In order for the approximations gFE to converge to the exact solution u, the following two conditions 
are necessary: 
l Approximability: u can be approximated well by the subspaces Zn”,; at least, we need 

inf{]ju--u]]* ]uE~~}+O as n-+a; 
l Stability: Thg bilinear form B (together with the subspaces ZYn, C?Jn) satisfies an inf-sup condition 

(also known as the BB condition, see [l]). 
In particular, if the stability condition holds, then problem (2) has a unique solution uFE which satisfies 

with a constant C > 0 independent of u and n. Thus, the error of the finite element approximation 
is-up to the constant C-as small as the error of the best approximant in the space Tn. Therefore, 
given stability, the performance of the finite element method is determined by the approximation 
properties of the spaces %n for the approximation of the solution u. These observations lead to the 
problem of constructing spaces Zn which are conforming (i.e. gR C SF’) and which have good 
approximation properties for the approximation of the exact solution u. 

1.2. Local approximability and interelement continuity 

Let us now consider some of the classical choices of the trial spaces %n and see how the condition to 
be conforming and the approximation properties are realized. In many applications (e.g. the heat 
equation, the elasticity equations in displacement formulation) the space 2 is a subspace of the Sobolev 
space H’. We will therefore concentrate on the classical piecewise polynomial subspaces of H’. In the 

1 
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classical FEM the spaces ZZ” are chosen such that they have good local approximation properties and are 
conforming; more precisely, they are chosen to consist of piecewise polynomials (or mapped 
polynomials) and are continuous across element boundaries. In the h-version of the FEM, the 
polynomial degree is fixed (typically, p =S 2), and the approximation is realized by decreasing the mesh 
size h. If the function u to be approximated is sufficiently smooth (in Hk, say), an appropriate 
interpolant Zu (for example, for p = 1 and piecewise linear functions on triangles, one can choose the 
nodal interpolant) satisfies an estimate of the form 

where C, p is independent of u and h. We see that the approximation properties of these classical 
h-version type finite element spaces are good whenever the exact solution is not ‘rough’. By ‘rough’ we 
mean here and in the rest of this paper that either higher derivatives of u are not square integrable (i.e. 
the case that k is close to 1) or that they exist but are very large (i.e. (ulHk is big). In both cases, the 
approximation with piecewise polynomial functions performs very poorly and the mesh size h has to be 
chosen very small before a reasonable accuracy is achieved (cf. Section 4 and Lemma 4.1). 

In the p version of the FEM the mesh is fixed, and the local approximation is realized by polynomials 
(or mapped polynomials) of increasing degree. Again, continuity across the interelement boundaries is 
enforced in order to ensure conformity of the finite element spaces. The error estimates typically have 
the form 

(5) 

and thus, the p version can be expected to work well whenever the exact solution is reasonably smooth; 
however, the p version exhibits the same deficiencies as the h version whenever the exact solution is 
rough. 

In conclusion, the approximation properties of both the h and the p version of the finite element 
method are based on the fact that 

(1) (local approximability) a smooth function can be approximated locally by polynomials, and 
(2) (conformity of the finite element spaces/interelement continuity) polynomial spaces are big 

enough to absorb extra constraints of continuity across interelement boundaries without loosing 
the approximation properties. 

Conversely, any system of functions which have good local approximation properties and can be 
constrained to satisfy some interelement continuity leads to a good finite element method. 

Let us first elaborate the problem of local approximability. There are many systems of functions 
which have good local approximation properties. For certain types of equations, one can exploit the 
structure of the differential equation to construct spaces of functions which can approximate the 
solution even better than the spaces of polynomials. In Section 3 we give a few examples of spaces 
which have very good approximation properties for the solution of Laplace’s equation, the homoge- 
neous Helmholtz equation, and the elasticity equations in two dimensions. For example, for the 
approximation of harmonic functions, it is enough to approximate locally with harmonic polynomials- 
it is not necessary to use the full space of polynomials. In the example of Helmholtz’s equation, we see 
below that local approximation can be done with systems of plane waves or with spaces based on radial 
Bessel functions. Finally, in Section 4 we consider a one-dimensional model problem with rough 
coefficients and construct spaces of functions (which take into account the rough behavior of the 
coefficients of the differential equation) which have good local approximation properties for the 
approximation of the (also rough) solution. In this example, the PUFEM based on these special 
functions leads to a robust method, i.e. a method which performs as well as the classical FEM performs 
for a problem with smooth coefficients. This is due to the fact that the special ansatz functions 
incorporate the rough behavior of the solution. 

Let us now turn to the problem of conformity of the finite element space / interelement continuity. We 
have just seen that it is possible to construct many spaces of functions (typically non-polynomial) which 
have good local approximation properties for the approximation of a solution u of a differential 
equation. In general, it is not possible to enforce conformity, i.e. interelement continuity. for these 
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non-polynomial local approximation spaces. The PUFEM, however, offers a means to construct a 
conforming space out of any given system of local approximation spaces without sacrificing the 
approximation properties. This is done as follows. Let {Q} be a system of overlapping patches which 
cover the domain 0 of interest. Let {cp,} be a partition of unity subordinate to the cover. On each patch 
4, let y C H’(Q) be a space of functions by which u[ R can be approximated well. The global finite 
element space V is then defined by Cj CP,~. Theorem 2.1’ below states that the global space V inherits 
the approximation properties of the local spaces V,, i.e. the function u can be approximated on 0 by 
functions of V as well as the functions u(, can be approximated in the local spaces v. Moreover, the 
space V inherits the smoothness of the partition of unity ‘p,. In particular, the smoothness of the 
partition of unity enforces the conformity of the global space V. 

1.3. Potential applications of the PUFEM 

We already mentioned above that one potential field of application of the PUFEM is problems where 
the classical polynomial based FEM fail. In this category fall problems where the solution is rough (or 
highly oscillatory) and the usual piecewise polynomial spaces cannot resolve the essential features of the 
solution unless the mesh size h is very small or the polynomial degree p is very large. In both cases the 
computational costs are high or even too high for today’s computers. Examples of problems with rough 
or highly oscillatory solutions are the elasticity equations for laminated materials, materials with 
stiffeners, or the Helmholtz equation for large wave numbers to mention but a few. In Section 4 the 
PUFEM is applied to a problem with rough coefficients. 

Problems of singularly perturbed type or problems where the solution exhibits a boundary layer can 
also be dealt with very successfully in the framework of the PUFEM. If the singular behavior of the 
solution is known, the PUFEM allows us to incorporate this knowledge directly into the finite element 
space. In contrast to this, the classical FEM has to use very small mesh sizes in order to resolve the 
singular behavior of the solution [15]. 

We mentioned above that the PUFEM falls into the general category of ‘meshless’ methods. This 
feature might be exploited for certain problems where the usual methods involve frequent remeshing. 
For example, in the problem of the optimal placement of a fastener, the engineer has to try several 
locations of the fastener. For each run, he has to remesh parts of the domain in order to account for the 
changed position of the fastener. One could construct a local approximation space which models the 
fastener and then changing the position of the fastener simply means changing the local approximation 
spaces. 

2. Mathematical foundation of the PUFEM 

In this section, we present a method of constructing conforming subspaces of H’(0). We construct 
finite element spaces which are subspaces of H’(0) as an example because of their importance in 
applications. We would like to stress at this point that the method leads to the construction of smoother 
spaces (subspaces of Hk, k > 1) or subspaces of Sobolev spaces Wkvp in a straightforward manner. The 
main technical notion in the construction of the PUFEM spaces is the (M, C,, C,) partition of unity. 

DEFINITION 2.1. Let J2 C R” be an open set, {Q} be an open cover of 0 satisfying a pointwise 
overlap condition 

Let {cp,} be a Lipschitz partition of unity subordinate to the cover {of} satisfying 

supp ‘p, C closure(Q) V i , (6) 

(7) 

(8) 
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(9) 

where C,, C, are two constants. Then {q} is called a (M, C,, Co) partition of unity subordinate to the 
cover {Q} . The partition of unity {cp,} is said to be of degree m E N, if {cp,} C C”( 5X”). The covering 
sets {Q} are called patches. 

DEFINITION 2.2. Let {Q} be an open cover of fi C IF!?” and let {cp,} be a (M, C,, C,) partition of 
unity subordinate to {Q} . Let v C H1(Oj rl L?) be given. Then the space 

v:=c cp,v,= c ‘p,Ui(UiEV, CH’(.q 
I L > 

is called the PUFEM space. The PUFEM space V is said to be of degree m E N if V C C”(0). The 
spaces Vi are referred to as the local approximation spaces. 

THEOREM 2.1. Let 0 C R” be given. Let {Q}, {cp,} and {Vi} be as in Definitions 2.1, 2.2. Let 
u E H’(0) be the function to be approximated. Assume that the local approximation spaces V. have the 
following approximation properties: On each patch fli fI 0, u can be approximated by a function ui E Vi 
such that 

llu - ~*IlLqf&“f2, =s El(i) 2 
IlVu - ~,NL~~n,nn~ c 4) . 

Then the function 

uap = c ‘p,ui E V C H’(0) 
I 

satisfies 

lb - %JL2(fl) SV%C,(F l T(i))l” , 

llw - %p)llLqn) SdEG(F (&)2’:(i)+C~e:(i))1’2. 

(10) 

(11) 

PROOF. We will only show estimate (11) because (10) is proved similarly. Let uap be defined as in the 
statement of the theorem. Since the functions cp, form a partition of unity, we have 1. u = ( Ci cp,)u = 
Ci ‘piu and thus 

Now, since not more than M patches overlap in any given point x E a, the sums C, Vq+(u - vi) and 
Ci q~~V(u - ui) also contain at most M terms for any fixed x E 0. Thus, jCi Vcp(u - ui)j2 4 M Ci IVqi(u - 
ui)12 and Ici cp,V(u - ui)12 6 M Ci IqiV(u - ui)12 f or any x E 0. Hence, if we observe that supp ‘pi C fii 

2 
II 
7 ‘pi(’ - Ui~l/Z2(~) + ‘/I7 cP,Y’ - ‘i)//’ 

L*(n) 

G2M F Ilv(p,(’ - ‘i)l12L2(f2) + 2M 7 IIPiv(’ - ui)ll~2(C2) 

~2~4 IX IIVqii(u - u,)IIIL2(ninR] + 2M F IIs~,v(u - ui)IIS(n,nn) I 
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which finishes the proof. 0 

REMARK 2.1. The constant M controls the overlap of the patches. In particular, not more than M 
patches overlap in any given point x E 0 of the domain. The patches have to overlap because the 
functions ‘pi are supposed to form a sufficiently regular (here: Lipschitz) partition of unity. Condition 
(9) expresses the fact that we need to control the gradient of the partition of unity functions vi if we are 
interested in H1 estimates. Note that typically e,(i) < C(diam Q)e2(i) so that the terms in the sum of 
(11) are in a sense balanced. 

The usual piecewise linear hat functions on a regular (triangular) mesh in two dimensions, satisfy the 
above conditions of a (M, C,, C,) partition of unity; actually, M = 3, C, = 1, and condition (9) is 
satisfied because of the regularity of the mesh, i.e. the minimum angle condition satisfied by the 
triangulation. Similarly, the classical bilinear finite element functions on quadrilateral meshes form a 
(M, C,, C,) partition of unity (M = 4, C, = 1). 

The PUFEM has approximation properties very similar to the usual h and p version if the local 
approximation spaces v are chosen to be spaces of polynomials. In fact, if the local approximation 
spaces consist of polynomials of fixed degree p and the approximation in y is achieved through the 
smallness of the patch Q, the method behaves like the h version. If the patches are kept fixed and the 
local approximation is achieved by increasing the degree p of the polynomials, which form the local 
spaces v., the method behaves like the p version. In this sense, the PUFEM is a generalization of the h 
and p version. 

3. Examples of local approximation spaces 

Let us consider a few examples of systems of functions which have good approximation properties for 
the solutions to a given differential equation and additionally solve the differential equation themselves. 
A minimal condition on such a system is that it be dense in the set of all solution. We will see that these 
systems are not unique and that there are many dense systems for a given differential equation. The 
choice of a particular system thus depends on practical aspects (cost of constructing the functions, ease 
of evaluation of the functions, i.e. cost of construction of the stiffness matrix; conditioning number of 
the resulting stiffness matrix) and theoretical aspects (optimality of the system; see Remark 3.5 below). 

3.1. Laplace’s equation 

Let us begin with Laplace’s equation 

--AU=0 (12) 

on a bounded Lipschitz domain 0 C [w2. The classical approximation theory in L” with harmonic 
polynomials leads to results of the following form. 

THEOREM 3.1 (Szegii). Let 0 C Iw2 be a simply connected, bounded Lipschitz domain. Let d 13 0 
and assume that u E L2( fi) is harmonic on d. Then there is a sequence (u,);,, of harmonic polynomials 
of degree p such that 

Ilu - uPIIL=(Rj c Ce-ypI141L2~d~ 9 
IIW - u~)IL~(~) c Ce-YPl141L2~d, 

where y, C > 0 depend only on 0, fi. 

PROOF. See [17, 201. 0 
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THEOREM 3.2. Let 0 be a bounded Lipschitz domain, star-shaped with respect to a ball. Let the 
exterior angle of .Q be bounded from below by hn, O<A < 2. Assume that u E Hk(0), k > 1, is 
harmonic. Then there is a sequence (u,) of harmonic polynomials of degree p k k - 1 such that 

j = 0, . . . , [k] 

where C > 0 depends only on the shape of 0 and k. 

See [8] for a proof of Theorem 3.2. Note that typically A s 1 and that for domains with re-entrant 
corners, A can be significantly less than 1. 

REMARK 3.2. The restriction in Theorem 3.2 that R be star-shaped with respect to a ball is not a big 
constraint for our purposes because we are interested in local estimates on patches and the patches are 
typically chosen to be star-shaped. 

REMARK 3.3. We note that the error estimates of Theorem 3.1 are (up to the constants involved) 
similar to the estimates one obtains for the approximation with full spaces of polynomials in that the 
dependence on p is essentially the same. However, since the number of harmonic polynomials of degree 
p is 2p + 1 and the number of polynomials of degree p is p(p + 1) /2, the approximation with harmonic 
polynomials is (asymptotically) better in terms of error versus degrees of freedom. 

REMARK 3.4. We formulated Theorem 3.2 in an H’ framework. Similar results in an L” setting can 
be found in [9], for example. Those estimates also exhibit the loss in the rate of the approximability 
when the domain fi has re-entrant corners. 

REMARK 3.5. Harmonic polynomials are not the only system of functions which are dense in the class 
of solutions to Laplace’s equation. For example, the systems {Re e”‘, Im e”‘]n E Q,}, or 
{Re zen, Im z-“In E No} (if O,& a), or the system of rational functions are dense in the set of solutions 
of Laplace’s equation. The system of harmonic polynomials is optimal in the sense of n-width for the 
approximation of rotationally invariant spaces of harmonic functions on discs (see [15]). 

3.2. Elasticity equations 

The solutions of the equations of linear elasticity (in the absence of body forces) in two dimensions 
can be expressed in terms of two holomorphic functions (see [lo]). Let us consider the case of plain 
strain on a bounded Lipschitz domain 0 C R* and let A, p be the Lame constants of the material (for 
the case of plain stress, replace in what follows A by A* = 2Ap/(A + 2~)). The displacement field (u, u) 
can be expressed by two holomorphic functions cp, $: 

2p(u(x, y) + iv@, y)) = K(P(z) - zl(z) -J/(z) (13) 

where K = (A + 3p)/(A + p) and we set z = + iy. For a given displacement state, the holomorphic 
functions cp, I,!J are unique up to the normalization of cp(z,) = 0 in a point z0 E 0. Thus, we may 
approximate the displacement field (u, u) by ‘generalized harmonic polynomials’ 

2&u + iv) = K(Pp(Z) - z<(z) -i&(z) 

where the functions cp,, I,$, are complex polynomials of degree p 

(14) 
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with complex coefficients a,, , b,. In a real formulation, the displacements u and u are obtained by taking 
the real and imaginary parts of the elements of the space V (as a vector space over R of dimension 

2 + 4P) 

V= span{l, i, (2 - z~)~, i(z - z”)~ , 

K(Z - Zo)n - n(z - zo)(z - Z”y- l , 

iK(Z - Z(J - in(z - zo)(z - z,)“-‘In = 1, . . . , p} . 

The approximation properties of these ‘generalized harmonic polynomials’ are very similar to the 
approximation properties of the harmonic polynomials for the approximation of solutions of Laplace’s 
equation. Obviously, in the case that the displacement field satisfies the elasticity equations on a domain 
d >> 0, the estimates of Theorem 3.1 produce similar estimates for the error in the displacement field 
and stress field for the approximation with ‘generalized harmonic polynomials’. The analogous theorem 
to Theorem 3.2 takes the form 

THEOREM 3.3. Let I2 C R2 be a bounded Lipschitz domain, star-shaped with respect to a ball. Let the 
exterior angle of 0 be bounded from below by HIT. Assume that the displacement field (u, v) E Hk(0), 
k 11. Then (u, u) can be approximated by ‘generalized harmonic polynomials’ of degree p 2 k - 1 such 
that 

ll2p(u + iu) - (K(Pp - (z - z,)< -&)lJH,(nj G C(diam a)“-’ y i’k-‘)Il(~y ~)ll~qR) ( > 
for j = 0,l. The constant C depends only on the shape of 0 and k. 

PROOF. The proof can be found [8]. A density assertion for these ‘generalized harmonic polynomials’ 
in the space of solutions of the elasticity equations can also be found in [6] (under stronger assumptions, 
however). 0 

REMARK 3.6. As in the example with Laplace’s equation, we are not restricted to using ‘harmonic 
polynomials’. Analogous systems based on functions of the form en’, or polynomials in l/z are also 
dense in the set of solutions of the elasticity equations. 

REMARK 3.7. The theory can be extended to problems with certain loads. In many practical 
applications the load is simple (constant, polynomial) where an explicit particular solution of the 
elasticity equations is known. Thus, augmenting the space V by this particular solution allows us to deal 
with these problems successfully in the framework of approximating the sought solution by functions 
which solve the differential equation. 

3.3. Helmholtz’s equation 

In this section let us consider the Helmholtz equation on a bounded Lipschitz domain 0 C R*: 

-Au-k2u=0 onfiCC* (15) 

where k > 0 is the wave number. For this problem we discuss two sets of functions which have good 
approximation properties for the general solution of (15). Define ‘generalized harmonic polynomials’ of 
degree p by 

V”(p) = span{e”“‘J,(kr)]n = 0, . . . , p} (16) 
where we used polar coordinates (r, 0) and the functions 1, are the usual Bessel functions of the first 
kind (see e.g. [5]). The nomenclature ‘generalized harmonic polynomials’ comes from the fact that 
these functions are the direct analogues of harmonic polynomials via the theory of Bergman and Vekua 
([3, 191). In fact, the approximation results for the approximation of harmonic functions with harmonic 
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(15) with ‘generalized 

THEOREM 3.4. Let R be a bounded Lipschitz domain, star-shaped with respect to a ball. Let the 
exterior angle of R be bounded from below by AT and assume that u E H”(a), s 2 1, solves (15). Then 
there are functions up E V”(p) such that 

llu - uJIHI(R, zz C@,s, k) y A(S-‘)lluIIff~~~2) 
( > 

j=O,l 

where C(fl, s, k) > 0 depends only on 0, k and s. 

PROOF. See [S]. 0 

As in the case of the approximation of solutions to Laplace’s equation, there are many other 
alternatives to the choice of ‘generalized harmonic polynomials’. For example, one can approximate the 
solutions of (15) with systems of plane waves: 

W(p) = span 
{ 

exp[ik(x cos tIj + y sin 0,)]]6, = $- j. j = 0, . . . , p-l . 
1 

(17) 

One can show that these systems of plane wave have approximation properties which are very similar to 
the approximation with ‘generalized harmonic polynomials’: 

THEOREM 3.5. Under the same assumptions as in Theorem 3.4 there are functions up E W(p) such that 

IIu - u,,lln,(q, d C(Gs, k) !+ hir~‘)lluIIns(nj 3 
( )’ 

j=O,l 

where C(0, s, k) > 0 depends only on 0, k and s. 

What are the differences between the generalized harmonic polynomials and the systems of plane 
waves? Just as the harmonic polynomials were optimal in the sense of n-width for the approximation of 
rotationally invariant spaces of harmonic functions on discs, the generalized harmonic polynomials are 
optimal in the sense of n-width for rotationally invariant spaces of solutions of (15) for the special case 
of R being a disc. 

An advantage of systems of plane waves is that they might be easier to use in practical applications. 
Plane waves can be written as products of functions of x and of y only; thus, if the patches consist of 
rectangles aligned with the coordinate axes, then the integrals appearing in the stiffness matrix can be 
written as products of one-dimensional integrals and evaluated cheaply. This observation has been 
exploited in Section 5.1. Let us finish this section by mentioning that these ‘generalized harmonic 
polynomials’ and the systems of plane waves lead to exponential rates of convergence if the function u 
is analytic up to boundary: 

THEOREM 3.6. Let 0 C R* be a simply connected, bounded Lipschitz domain. Let fi >> fl and 
assume that u E L’(h) solves the homogeneous Helmholtz equation on d. Then 
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3.4. Change of variables techniques: Rough coefficients and elasticity equations with corners 

The idea of the PUFEM is to enable the user to employ functions with good local approximation 
properties. These functions do not necessarily have to solve the differential equation. In fact, it can 
sometimes be too costly to create ‘optimal’ functions. One method to create functions which have good 
local approximation properties is obtained by an appropriate change of variables. Let us assume that 
the change of variables x H ,C transforms the sought solution u into a function u” _which is smoother than 
u. Then, this transformed function u” can be approximated well by polynomials_P(_x). This suggests that 
a_good choice for the approximation of u are the mapped ‘polynomials’ P(x) = P(X) where the functions 
P are polynomials. 

This idea has been analyzed for a model problem with unilaterally rough coefficients in [13] (the next 
section considers in detail the one-dimensional analogue of the problem considered in [13]). 

The idea of exploiting the improved approximation properties of mapped ‘polynomials’ has been very 
successfully applied to the problem of the elasticity equations with singularities [ 11, 121. The natural 
change of variables (in a two-dimensional setting) is a conformal map which makes corner singularities 
or singularities arising at interfaces less pronounced. The mapped function can be approximated well by 
polynomials. Mapping the polynomials back under this conformal map leads to the ansatz functions 
used. 

3.5. The choice of the partition of unity functions 

In the preceding subsections, we described various choices of local approximation spaces which have 
better approximation properties than the spaces of polynomials of degree p. Let us now turn to the 
problem of the choice of the partition of unity which puts a given set of local approximation spaces 
together to produce a conforming global space. The conditions on the partition of unity are very weak: 
a Lipschitz partition of unity suffices to construct a subspace of H’ according to Theorem 2.1. 

Let us consider a domain 0 C lR*. One possible choice of a partition of unity is a collection of finite 
element functions. Let fi > 0 be any domain on which a mesh (consisting of triangles or rectangles, 
say) has been defined. The usual piecewise linear or bilinear hat functions associated with the nodes of 
this mesh form a partition of unity for fi and therefore for 0 as well. The supports of these hat 
functions can then be taken as the patches 4. If the mesh satisfies a minimum angle condition, this 
partition of unity satisfies all the requirements of Theorem 2.1. This particular choice has been made for 
the numerical example of Section 5.1. 

A more general choice of a partition of unity is given by the following procedure. Let {Q} be a 
collection of overlapping patches which cover 0 and let {I,!+} be a collection of functions which are 
supported by the patches 4. Then the normalization 

yields a partition of unity subordinate to the cover {Q}. Note that for given i the sum in (18) actually 
only extends over those j which satisfy Q fl qj # 0. The functions cp, inherit the smoothness of the 
functions & and thus this normalization technique gives one possible construction of finite element 
spaces with higher regularity, for example, subspaces of Hz. 

We have seen in the Introduction that a finite element method is completely determined by the 
bilinear form and the finite dimensional trial and test spaces, In order to solve (2) in practice, we have 
to find bases for the test and trial spaces. Since the finite element spaces V constructed by the PUFEM 
are of the form V= C cp,V, where the vi are a partition of unity and the y are the local approximation 
spaces, it is natural to seek a basis of V based on bases of the spaces vi. If {u~,~~P = 0, . . .} are basis 
functions of the local spaces q, one can hope that the functions 

3 = {‘PiQJ (19) 

form a basis of V. However, there are a few cases, where the set B is not linearly independent. In order 
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to see this, let us consider a one-dimensional example. Define 0 = (0, l), h = l/n, xi = ih, i = 0, . . . , n, 
fij = (x, - h, xi + h), and let qi be the usual piecewise linear hat function associated with the node xi. 
Now choose for the local approximation spaces V = span{ 1, x, . . . ,~~},pEN.ThePUFEMspaceVis 
then precisely the space of continuous functions which are piecewise polynomials of degree p + 1, i.e. 
dim V= n( p + 1) + 1. On the other hand, the set 53 contains n( p + 1) + p + 1 elements. Thus, 3 
cannot form a basis of V. Of course, this particular example is somewhat contrived and in general the 
set % will form a basis of V. However, this example shows that we may have to expect that the elements 
of 3 could be nearly linearly dependent which will lead to badly conditioned stiffness matrices. 

One way to ensure that the sets 6% of the form (19) are linearly independent is to constrain the 
partition of unity in such a way that each function ‘p, is identically 1 on a subset of 0; and all other 
functions 4 vanish on this subset. 

The linear dependencies in the one-dimensional example above can be removed by a slight change of 
the partition of unity functions. It is enough to change those partition of unity functions which are close 
to the boundary. Since we will use this particular partition of unity for the numerical example in Section 
4.3, we describe it in more detail: 

x, = ih 

0, = (0,2h) 

o;=(x;-h,x,+h) 

n n-, = (1 - 2h, 1) 

c 
1 if x E (0, h) 

i=l,...,n-1 

i=2,...,n-2 

‘PI = x-h 
l-7 if x E (h, 2h) 

x-x. 
I+* ifxE(xi-h,xi) 

‘p, = x-x- i=2,. . . ,n -2 
1-h ifxE(x,,xi+h) 

1+x-Wh) 
R-1 = h 

ifxE(l-2h,l-h) 

1 if x E (1 - h, 1) 

4. A robust method for an equation with rough coefficients 

4.1. Construction of robust local approximation spaces 

In this section we want to construct a robust method for the approximation of the solution 
equation with rough coefficients. As a model problem let us consider the elliptic boundary 
problem 

Lu = -(a(x)u’)’ + b(x)u = f on 0 = (0,l) 

u(0) = u( 1) = 0 

where the coefficients a. b EL”(o) satisfy 

O<a,Ga(x)GIlajlL-<~, Osb(x)sllbjjL-<m on 0. 

(20) 

of an 
value 

(21) 

We assume that the function f f L”. Observe 
Lipschitz continuous, i.e. 

u, au’ E W’.-(n) . 

that the solution u of (21) and the function au’ are 

However, if a is merely in L _, we cannot expect the solution u to be in some w”f(n), E > 0. Thus, the 
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classical piecewise polynomial finite element spaces may perform very poorly. In fact, the following 
result holds: 

LEMMA 4.1. Let b = 0, f = 1 in problem (21) and let Q(n) be any sequence of numbers which 
decreases monotonically to 0. Then one can find a function a E L u with 1 s a(x) < 2 and a constant C > 0 
such that for any n dimensional space V, of continuous, piecewise linear functions 

(22) 

PROOF. [2]. 0 

The lemma shows that the usual finite element method may converge arbitrarily slowly (as the 
number of degrees of freedom n is increased) if the coefficient a is sufficiently rough. Note that (22) 
holds for all spaces of continuous, piecewise linear functions, and thus we cannot improve the rate of 
convergence by choosing the meshes judiciously. In practice, this means that the classical FEM breaks 
down for these rough coefficients because ‘convergence’ is only achieved for extremely small mesh sizes 
h. 

REMARK 4.1. The case that the coefficients a, b are smooth but highly oscillatory (i.e. large 
derivatives) is also covered by the ensuing theory. When the coefficients are smooth but highly 
oscillatory, the exact solution u may be smooth (in HZ, say), but IIuII,,?(~) is so large that the 
asymptotic behavior of the finite element method is visible for very small mesh sizes only. The special 
ansatz function constructed below circumvent this phenomenon and lead to robust finite element 
methods which behave as if the coefficients a, b were smooth (with reasonable bounds on the 
derivatives). 

The goal of this subsection is to construct (local) approximation spaces for the approximation of u 
which are robust in the sense that the PUFEM based on these ansatz functions behaves similarly to the 
usual finite element method with smooth coefficients a, b and f. We construct spaces with any desired 
order of approximability (for sufficiently smooth right-hand side f-the coefficients a, b, however, are 
still assumed to be merely in L”). In Proposition 4.2 we exhibit such spaces. However, since the 
functions of Proposition 4.2 are the solutions of auxiliary problems, which are not necessarily easier to 
solve than the original problem, we present approximations of these functions in Theorem 4.1 which 
have approximation properties as good as those of Proposition 4.2. 

Define 

IlblL B_ 
a0 

and let us consider the approximation of u on an interval I C 0 of length h by two functions uo, ui 
which form a fundamental system for L, i.e. any solution u of the equation Lu = 0 can be expressed as a 
linear combination of uo, u, . 

PROPOSITION 4.1 (Approximation with fundamental systems). Let u be the solution of (21), I C 0 be 
an interval of length h, and let uO, u, be a fundamental system for L. Under the assumption that 
Bh G y < 1, there is u,, EV= span{u,, u,} such that 

II@ - %J’llP(I, 6 a”(ll r> hllf llL”U) . 

PROOF. Fix x0 E I. Choose uh E V such that the function e = u - uh satisfies 

Le=f e(x,) = 0 (ae’)(x,) = 0 . 
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Then we have an explicit formula for the error e 

(ue’)(x)=-/X:f-bedt. 

Since e(x,) =O, we have Ilell.z(rj Ghlle’llL-cl, and hence (23) allows us to bound 

~,,l141L7~1~ == l141L~~I, 41fllL=~I~ + IlbllL41~‘llL~~I~ . 
With the assumption that 1 - Bh 2 1 - y we conclude 
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(23) 

REMARK 4.2 One choice of the fundamental system is the following one. Let x0 E I be a reference 
point and let u,,, u, solve the initial value problems 

Lu,, = 0 u,(x,,) = 1 (aah) = 0 

Lu, =o a,(xlJ = 0 (aa;) = 1 . 

Then the function 

Lfh = u(xo)uo + (uu’)(x,)u, E v 

satisfies the estimates of Proposition 4.1. 

We note that the estimates of Proposition 4.1 are robust in the following sense. The exact solution, in 
spite of being merely in W 1,X, can be approximated with accuracy O(h) independently of the roughness 
of the coefficients u and b: Only the bounds a, and Ilbl(,= enter in the estimates. 

Proposition 4.1 gives local approximation spaces which are first-order accurate. Let us now construct 
local approximation spaces which have higher order of accuracy (assuming that the right-hand side f is 
sufficiently smooth). To that end we will augment the space V of Proposition 4.1 by particular solutions 
to certain right-hand sides. 

PROPOSITION 4.2 (Approximation with augmented fundamental systems). Let u be the solution of 
(21), I C 0 be an interval of length h, x0 E I be a reference point, and let uO, u1 be a fundamental system 
for L. Let u,, i E kJ,, be functions such that Lvi = (x -x0)‘. For p E kJ, U {-l} define the space 

v, = 
1 

span{u,, ul, vu,. . . , up} if p EN, 

span{u0q uJ if p=-1. 

Under the assumption that Bh =S y < 1 and f E C “‘l(d), there is u,, EVP such that 

lb - 4IL”W zs l a,(1 - Y)(P + I)! 
hp+31jf(p+‘)ll,_~(,J , 

II@ - %)‘llL”(,) sz u,(l _ v;(p + I)! hp+211f (p+l)llL”c~~ . 

PROOF. The case p = -1 has been handled in Proposition 4.1. Let therefore p E N,. Taylor’s theorem 
allows us to write f = C:=, f,(x -x”)~ + R(x) where IIRIILXc,, s (hPfl)/(p + l)!llf(P+“~~LZ~,~. Then the 
function e = u - Cz=,, f,v, satisfies Le = R on I. Using Proposition 4.1 we can approximate e with the 
functions uO, u, and arrive at the desired estimates. Cl 

Proposition 4.2 permits us to construct robust methods of any desired order (assuming that the 
right-hand side f is sufficiently smooth) if we can find the local approximation functions uO, u, , v,,, . . . . 
In the special case b = 0, these functions are explicitly available: 
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%(X) = I * 1 
u0 = 1 - dt Ui(X) = - & 

(t - X”)j+r 

xc, a(t) 4) 
dt . 

In the general case, b#O, finding uO, ur, and the ui amounts to solving appropriate auxiliary problems 
on I. In practice, we have to find approximations to the functions uO, u1 , ui. In the rest of this section 
we will describe one method to approximate these functions and analyze how accurate these 
approximations have to be. For the approximation of these functions, we will use the fact that they can 
be written as the solutions of appropriate Volterra integral equations which can be solved by an iterative 
method. We will see that only a few iterations are necessary to yield satisfactory approximations of the 
functions uO, ur, ui. 

For the remainder of the section, let I C R be an interval of length h and let x0 E Z be a reference 
point in I. Let us consider the initial value problem 

Lw = g E L”(Z) 

The function w is the 

w=Kw+G 

where the operator K 

l-1 1 

w(xo) = wo (aw’)(x,) = w, . (24) 

solution of the following Volterra integral equation 

and the 

f’ 

function 6 are defined by 

(25) 

(26) 

(27) 

The theory of Volterra integral equations (see e.g. [7]) allows us to expand the solution operator 
(Z - K))’ in a Neumann series, and we can write 

a 

w= c K”G. 
n=O 

We introduce now approximations to the exact solution w by partial sums of this series: 

(28) 

We need to estimate w - wN. The next two lemmas clarify the approximation properties of the 
approximants PP. 

LEMMA 4.2. Let the operator K be defined as in (26). Then for any w EL”(Z) and any n E No we have 

Iww(x)l 4 B”‘;2;):o’2n lI4lL=(I) ’ 
2n+l 

I(K”+‘w)‘(x)I =G “^‘;l”,;;;\ llwll L”(I) 

where again B = a,‘((bl(,=. 

PROOF. The first estimate is the classical estimate for Volterra integral equations (in a Co setting) and 
may be proved by induction. The second estimate follows from the first one with the observation 

I(~K”~)~~)’ = I--& l b(t)(K”w)(t) dt / s B 1 Jlx, I(K”w)(t)l dt 1 . 
•I 
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REMARK 4.3. Lemma 4.2 shows that the fixed point equation (25) can be solved by a Neumann series 
expansion in an Co or an W l,m setting. The Neumann series converges for any h > 0. 

LEMMA 4.3. Let w be the solution of the fixed point problem (25) and let wN be the approximation 
given by (28) for NE N, U (-1). Then 

where C,, C, are defined by 

N+I 

C2(N’ h’ B, = (2: + l)! n=O (2N + 2n + I)! c (2N+1Y 

PROOF. We can write w - wN = Cr=,+, K”G and use the bounds on the operators K” obtained in 
Lemma 4.2. 0 

REMARK 4.4. Under the assumption I.? E W’,“(Z), G(xo) = 0, the estimate on (w - w”)’ can be 
formulated in the following, more compact form: 

where C, is given by 

C,(N, h, B) = 

C,O’, h, B) ifNEN, 

l+hZCz(O,h,B) ifIV=-1. 

REMARK 4.5. Under the assumptions Bh s y < 1, h < 1, we can easily bound C,, C, by 

N+l 

Cl(N.h,B)s (4+2)! &h - forNE&U{-l}, 

BN+I 1 
CO7 k B) 6 (2N + 2)! 1 _ y,?, for NE No . 

This analysis of the fixed point problem (25) is now the tool for the approximation of a fundamental 
system uo, u, and for the approximation of particular solutions uj. Let uo, ur , vi be given by 

Lu,=O u,(x,) = 1 (au%,) = 0 

Lu, =o %(x0) = 0 (au;)(x,) = 1 

Lu, = (x - x0); Ui(XO) = 0 (au :)(x0) = 0 

which are solutions of problem (25) for appropriately chosen wo, w, and g. Let ut, ur and UN. 
N E N, U {-l}, be the approximations to the exact solutions as defined by (28). Then, the following 
lemma holds: 
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LEMMA 4.4 

llu,, - u,Nli L=(() =S h*“‘+‘CI(N, h, B) 

I(&, - u;)‘[[~=(~) S hZN+‘C,(N, h, B) for NE N, 

I(ul - u;JI,z(,) S h’N+3C,(N, h, B)$ 

II@, - u;y)‘II,=(,) c h2N+2C3(K h, B) $ 

IIui - uNIIL”(,) 6 h2N+4+iC1(N> h> B) a,(i + :l(i + 2) 

ll(u, - uN)‘llL”(I) ~h2N’3+iCg(N, h, ‘) a,(i: 1> . 

Mech. Engrg. 139 (1996) 289-314 

PROOF. The proof follows directly from Lemma 4.3 and Remark 4.4. 0 

We would like to construct an approximation of the space V, of Proposition 4.2. Lemma 4.4 enables us 
now to calculate how many terms of the Neumann expansion suffice. Recall that the error estimate of 
Proposition 4.2 for the approximation in V, is O(h p+2) (for the error in the derivative). The 
approximations ur , VP and ui have to be calculated with the same accuracy. This gives for the number 
of terms: 

p+-l 
N”3-- 

2 
for the approximation of u,, 

P 
N ‘-- I- 2 for the approximation of u, 

p-i-l 
I+ 2 for the approximation of ui 

where IV,, N,, i, E N, u {-l}. Choosing the smallest N,,, N, and Ei such that these three inequalities 
are satisfied, we can define 

cp = 1 span{up, uyl, u”,li = 

span{& u3 

For example, we have 

G_1 = span{uz, u:} = span 
{ 

1 

1 7 . . . 3 P) for PEWl 
forp=-1. 

(29) 

QO = span{&, uy, ui} = span { 1 + L&l0 W7)d7dt, &df. lk$-dl) 

GI = span{& u:, vi, uy} 

F2 = span{ui, ui, ui, u:, ui} . 

We now show t_hat the space I$ has indeed the desired approximation properties, i.e. the approximation 
properties of V, are essentially the same as those of the spaces V,. 

THEOREM 4.1 (approximate augmented fundamental system). Let I C 0 be an interval of length h_, 
x0 E Z be any reference point in I, and let u be the solution of (21). Let p_E N, U { -11, f E C”“(d), VP 
be deJined as in (29) and assume that Bh s y < 1. Then there is u,, E V, such that 

lb - ~hllLI~I~ s hp’3C(py By a,, r)llf llCp+~~~~ y 
II@ - ~JlL=~,~ ~hhp~ZC(p~B~ao~~)llf~~cP+~~~, 

where C(p, B, a,, y) depends only on p, B, a,, y and a. 
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PROOF. The proof follows very closely the proof of Proposition 4.2. Let us write 

f(x)= 5 ~(x-x~)~+,(x) 
n=O . 

where the remainder R(x) satisfies j[RIIL=(,j s (hP+‘)/(p + ~)!llf(“+~)~j~~(,). If we agree to assign 
empty sum the value 0, the estimate for R also holds for p = -1. The approximant of Proposition 
could be chosen to be (cf. also Remark 4.2) 
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the 
4.2 

p f yx ) 
U np = uhho + (au’)(xoh + z +*n . 

n=O * 

Because the functions v, satisfy vn(xo) = (avA)(xO) = 0, the error r = u - uap satisfies 

Lr=R r(xo) = 0 (ur’)(x,) = 0 . 

Let us approximate u in fp by 

p f ‘“‘(x0) @ 
Uh = u(xo)?@ + (uu’)(x,)u~~ + c -g--vi ’ ) 

n=O . 

and we get the following representation for the error: 

p f ‘“‘(x0) 
u - Uh = u(xo)(uo - u,“o) + (UU’)(X”)(U, - My) + c 

fl=O 

7 (vi - vfi) + r 

From Lemma 4.3 with N = -1, we can bound r 

lkll LxcIF G C (-1 h &llRll 1 3 7 a* L”(I)=&l,hJ) .,,yyl)! llf (P+‘)llL”(I) 7 

Ilr’ll L’(I) =s q-1, k B) $ IIRIIL~c,) G G-1, k B) .,(;p;21,, Ilf (p+1)IIL”(,) . 

Applying the estimates of Lemma 4.4 to the remaining terms of the error representation finishes the 
proof, if we observe that IIuII,=(~), I[~u’JI~=(~) can be bounded by C(a,, B, fl)ll f JILzcn,; C(a,, B, 0) 
depends only on a,, B, and 0 according to standard regularity theory. q 

REMARK 4.6. The approximation properties of the space f_-, can be understood with the ideas of 
Section 3.4 as well. If one introduces the change of variables x” = 15 l/a(t) dt, then problem (21) is 
transformed to a problem of the form 

where b”, f” are still in L” and hence u” E W2,-. The elements of I?* transform to linear functions. 
Therefore, the approximation of u in c_-, can be expected to behave like the approximation of a W2,- 
function by linear functions. 

4.2. Construction of the global finite element space 

We will now construct a global conforming finite element space from the spaces ?p (cf. (29)), which 
have good local approximation properties for the approximation of the solution of (21). We proceed as 
outlined in Section 2. Let (Q):, be a covering of 0 = (0, 1) satisfying the overlap condition. Let (pi),“=, 
be a (M, C,, C,) partition of unity associated with this covering (Q). The local approximation spaces V, 
are given by Theorem 4.1 as follows. In each patch, we choose a reference point zj E tij (which plays 
the role of the point x0 of The_orem 4.1). For p E No U {-l}, the local approximation spaces v = V,(p) 
are then taken as the spaces V, of (29) with reference point zj instead of x0. Theorem 4.1 immediately 
gives for the local approximation properties (expressed in the notation of Theorem 2.1) 
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e,(i) Q C(p, B, a,, y, fl)(diam ~~)P’3t1’2~~fJJ~~+~~~~ , 

e,(i) s C(p, B, a,, y, fl)(diam ~i)P’2+1’2JlfJI~p+~~~~ . 

We define the global approximation space V = V(p) = C,“= , ~T~V;( p). H ence, for u solving (21), there is 
u,, E V(p) such that 

So far we have not dealt with the essential boundary conditions at x = 0 and x = 1. However, they are 
easily enforced by a judicious choice of the reference point for the patches Q close to the boundary, i.e. 
Q fl a0 # 0. For these patches, we choose the reference point zi to be the boundary point and then 
simply leave out the approximations up to u0 because all the other elements of FP vanish at the 
reference point. The finite element space V(p) is thus a subspace of H’(0) and satisfies the boundary 
conditions, i.e. it is a conforming finite element space. 

Let us give a more concrete example of the abstract procedure given above for the construction of the 
global space V(p). Let n E N, h = l/n and define the patches tii and the partition of unity cpi as in Eqs. 
(20). The local approximation spaces V,(p) associated with the patches flj are given by (29) where the 
reference point in each patch 4 is chosen to be the node x, for i = 2, . . . , n - 2. For i = 1 the reference 
point is chosen to the left boundary point x = 0 and for i = n - 1 the reference point is chosen to be 
right boundary point x = 1. The approximation space V,(p) and V,_,(p) associated with the first and 
last patch are constrained to satisfy the essential boundary conditions by omitting the approximations to 
c+,. For example, the two simplest spaces are 

V(-1) = span CJJ,(X) 
i 1 

,:&df’cp,-l(x) I ,X&dt, CP,(X), qi(x) l&drli=2,. . . ,n -2) (30) 

V(0) = span cp&) 
1 I 

,: & dt, ‘~1 (r) i ,^&df, cp,-,(x) i 11-d&~&) 
1 a(t) I 

“t-l 
, a(t)dt. 

~j(x)(I+~~I,:b(r)didr). o(x)~~dt,~i(X)j:~dtIi=2,. . .,n-2}. (31) 

The above theory gives that the spaces V(-1), V(0) approximate the solution u of (21) such that 

$V:f_,) lb - %llLqR) + 4l(u - 42)‘llL~(f2) G w, a03 YMlL”u2,~2 (32) 

$r& llu - %IllL’(R) + hII@ - %HlLqR) =G cm a03 ?MlCw,~3 (33) 

where the constant C(B, a,, y ) depends only on B, a,, and y if Bh 4 y < 1. Let us note that 

dim V( - 1) = 2(n - 3) + 2 dim V(0) = 3(n - 3) + 4 . (34) 

4.3. Numerical example 

In this subsection, we apply the above constructed finite element spaces to a concrete differential 
equation. We consider 

Lu = -(u(Nx)u’) + bu =f(x) on 0 = (0, 1) 

u(0) = U( 1) = 0 
(35) 

where the function a is l-periodic, N E N large, and the coefficient b is either b = 0 or b = 1. The 
right-hand side f is taken to be f = x for b = 0 and f = 1 for b = 1. For the l-periodic function a, we 
consider two cases: 
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al(x) = 
1 

2 + cos( 2Tr.x) 

1 1 ifxE(O,+) 

%@)= 2 ifxE(+,l). 

The solution of (35) is in H2(0) ( even piecewise C”) for both choices of the coefficient a. However, the 
solution is rough in our terminology as it has very large higher derivatives. 

Associated with this problem is the notion of an ‘energy’ 

Ilul,‘E = 1,’ u(Nx))u’l’+ blul’dx 

and an ‘energy’ norm, which is the square root of the energy. 
The typical behavior of the classical piecewise polynomial finite element methods for this particular 

problem is to converge (in the energy norm) for very small mesh size only, namely when the mesh size 
h is so small that the finite element space can resolve the oscillation of the coefficient a. The classical 
finite element methods therefore converge for h <N-l only. 

By the method outlined in the preceding subsection, we can create robust approximation spaces of 
any desired order for the approximation of (35). However, we restrict ourselves here to the two spaces 
V(-1), V(0) defined in (30), (31). For comparison, let us introduce a third type of space, namely, a 
space where the local approximation spaces consist of polynomials. Using the same partition of unity 
{cp,} as in the construction of V( - l), V(0) (cf. (20))) we define 

V po,y=span{cp, ‘X,‘p,_, .(X-l),~i,‘pi’(X-Xj))i=2,. . . ,n -2). (36) 

This space Vpoly contains all piecewise linear functions and is a subset of the usual piecewise quadratic 
finite element space. It will therefore serve as a comparison of the usual finite element method with our 
robust spaces. 

Figs. 1 and 2 show the performance of the three spaces V(O), V(-1), and Vpo,,, for the coefficient a, 
for the cases b = 0, N = 4096, and b = 1, N = 52 488 whereas Figs. 3 and 4 correspond to the coefficient 
u2 for the cases b = 0, N = 4096, and b = 1, N = 52 488. In all the graphs, the mesh size ranges from 
h = $ to h = &. Eq. (34) relates these mesh sizes to the number of degrees of freedom; in particular, 
the number of degrees of freedom is proportional to 1 lh for both V(-1) and V(0). Therefore, estimates 
(32), (33) yield bounds of the form 

rel. error in energy G C doff’, C doff4 (37) 

for the approximation in V(-1) and V(O), respectively. The size of the constant C is independent of the 
roughness of the coefficient a, i.e. it is independent of the number N. We can see in Figs. l-4 that these 
rates of convergence are actually attained and that the method is robust: Estimates (37) hold for very 
few degrees of freedom and the good behavior of the method is independent of N (the PUFEM 
performs equally well for the cases N = 4096 and N = 524 288). The spaces Vpoly behave in a totally 
different way. Since the graphs cover only the range h = + to h = &, we still have h > N-’ and cannot 
expect the usual finite element method to work. Indeed, the error stays almost constant over the whole 
range. 

We considered two cases b = 0 and b = 1. The difference between those two cases lies in the fact that 
for b = 0 the spaces I/(-l) and V(0) are based on local approximation spaces which contain an exact 
fundamental system whereas in the case b = 1 the local approximation spaces contain only an 
approximate fundamental system. We see, however, that the approximate fundamental system is 
accurate enough not to upset the rate of convergence, just as the theory of Section 4.1 predicts. 

Finally, let us mention that we chose a problem with periodic coefficients for computational 
convenience. In this particular case, the periodicity could be exploited in such a way that the 
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construction of the stiffness matrix and the evaluation of the right-hand side is achieved with an amount 
of work independent of the number N; the work is-up to a constant-the same as for the usual finite 
element method for N = 1. 

This numerical example shows that the PUFEM based on the local approximation spaces constructed 
in Section 4.1 leads to a robust method: The performance of the finite element spaces V(-1), V(0) is 
independent of the roughness of the coefficients of the differential operator and their performance is 
comparable to the classical piecewise linear or quadratic finite element spaces for a problem with 
smooth coefficients. 

5. Helmholtz’s equation and concluding remarks 

5.1. Helmholtz’s equation 

In this section we present an application of the PUFEM to the Helmholtz equation in two 
dimensions. We consider the problem 

-Au - k2u = 0 on 0 = (0,l) x (0,l) C R2 

d,u+iku=g on &? (38) 

where g is chosen such that the exact solution is a plane wave of the form 

u(x, y) = exp{ik(x cos 8 + y sin @)} , 
77 

8==. 

In Section 3.3 we discussed two types of local approximation spaces for the approximation of solutions 
of Helmholtz’s equation. We could take either the ‘generalized harmonic polynomials’ of (16) or the 
systems of plane waves (17). In the numerical examples presented here, we concentrate on the systems 
of plane waves (for a comparison of these two different local spaces, see [S]). The partition of unity for 
this particular problem is given by piecewise bilinear hat functions: For it E N, the square 0 is 
subdivided into n x n squares of side length h = l/n. With each of the (n + 1)2 nodes (xi, yi) we 
associate a piecewise bilinear hat function ‘pi which vanishes in all nodes except (xi, y,). The patches 0, 
are taken to be the supports of these pi. The PUFEM is based on this partition of unity and the local 
approximation spaces V are chosen to be the spaces W(p) of (17). 

REMARK 5.1. In this particular implementation we only used the space W(p) with p of the form 
p = 4m + 2, m E N, to ensure that the exact solution of problem (38) is not in the PUFEM space. 

In this application of the PUFEM, we have thus two parameters which influence the approximation 
properties of the global finite element space, namely, the mesh size of the partition of unity, which is 
determined by n, and the size of the local approximation spaces V, which is controlled by p. If the 
parameter p is fixed and the mesh size is variable, we talk about the h version of the PUFEM; if the 
mesh is fixed and the approximation is achieved by increasing the size of the local spaces (i.e. by 
increasing p), we talk about the p version of the PUFEM. If both h and p are varied, we would then 
talk about the hp version of the PUFEM. The estimates on local approximability of Theorem 3.6 let us 
expect exponential rates of convergence as a p version, This exponential convergence of the p version 
of the PUFEM can be observed in Fig. 5 for the cases n = 1 and n = 2. 

We will discuss the numerical results only briefly; a more detailed analysis can be found in [15]. In 
Tables 1-6 the PUFEM is compared with the usual Galerkin finite element method (FEM), the 
generalized least squares finite element method (GLS-FEM) of [18], and the quasi-stabilized finite 
element method (QSFEM) of [14]. Since all three methods are based on piecewise linear functions on 
uniform grids, Tables 1 and 2 include the piecewise linear best approximant for reference. In Tables 
1-4, we use the norm L* as the error measure and analyze the case k = 100. Tables 5 and 6 deal with 
the case k = 32 and the H’ semi norm as the error measure. Tables 1 and 2 show that the p version of 
the PUFEM needs markedly fewer degrees of freedom to achieve the same accuracy in L2 as the other 
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Table 1 
DOF necessary to obtain accuracy E in L* norm; k = 100 

6 (%) Best p.w. linear QSFEM 
approximant 

GLSFEM FEM 

30 2.045D + 3 3.969D + 3 2.016D + 4 7.784D + 4 
10 5.041D + 3 l.OOOD + 4 6150D + 4 2.352D + 5 
5 8.464D + 3 1.96OD + 4 1.274D+5 4.692D + 5 

Table 2 
DOF necessary to achieve various accuracies in Z,’ for PUFEM with n = 4 and various other methods; k = 100 

P L* error (%) PUFEM Best approx. QSFEM FEM 

26 10.8 6.50D + 2 3.80D + 3 7.95D + 3 2.08D + 5 
30 0.69 7.50D + 2 5.89D+4 1.23D + 5 3.23D + 6 
34 0.11 8SOD + 2 3.45D + 5 7.23D + 5 1.90D + 7 

Table 3 
Number of operations using band elimination-the p version of the PUFEM; n = 4; k = 100; error in Lz 

P L2 error (%) PUFEM QSFEM FEM 

26 10.8 1.76D + 7 6.3D + 7 4.3D + 11 
30 0.69 2.71D + 7 1.5D + 10 l.OlD 13 + 
34 0.11 3.94D + 7 5.2D + 11 3.6D + 14 
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Table 4 
Number of operations for hp version of PUFEM; k = 100; L’ error 

P n L’error (%) NOP PUFEM 

26 4 10.8 1.76D+7 
18 8 10.6 5.23D + 7 
14 16 9.5 2.75D + 8 

Table 5 
Operation count for solving linear system; error in H’ norm; k = 32 

Galerkin 

ViWF H’ error (%) No. iter NOP 

QSFEM 

H’ error (%) No. iter NOP 

32 6.5 232 4.51D + 6 30.5 272 5.29D + 6 
64 21.7 434 3.37D + 7 14.3 492 3.82D + 7 

128 8.16 831 2.68D + 8 7.02 953 2.96D + 8 
256 3.64 1665 2.07D + 9 3.48 1863 2.31D + 9 
512 1.72 3263 1.62D + 10 1.69 3752 1.86D + 10 

Table 6 
Operation count for band elimination for PUFEM; k = 32, error in H’; n = 1 

P H’ error (%) NOP PUFEM 

18 46 1.3D+5 
22 6.7 2.3D + 5 
26 0.38 3.8D+5 
30 0.00025 5.9D + 5 

methods, which are based on piecewise linear ansatz functions. This reduction in degrees of freedom 
translates in a reduction of the number of operations when the linear system is solved using Gaussian 
elimination. This is demonstrated in Table 3. In Table 4 we list the various combinations of p and n 
which lead to the same accuracy of 10% in L2. Since we expect the PUFEM to exhibit exponential rates 
of convergence as a p version but only algebraic rates as an h version, the number of operations is 
smallest for the largest mesh size h. In Tables 5 and 6 we compare the operation count of the Gaussian 
elimination for the PUFEM with the operation count of the Galerkin method and the QSFEM. The 
linear systems in these latter two methods are solved by the iterative method proposed in [4]. We see 
that here again, the PUFEM performs better than the other two methods. 

We have seen that the PUFEM is superior to the other methods both in terms of error versus degrees 
of freedom and error versus number of operations. Let us point out that the discrepancy between the 
PUFEM and the other methods becomes larger as the accuracy requirement is increased. 

REMARK 5.2, We used systems of plane wave as local approximation spaces because their specific 
structure and the particular form of the partition of unity allowed us to create the stiffness matrix 
cheaply. Therefore, the overall amount of work for the PUFEM is dominated by the operation count of 
the Gaussian elimination. 

5.2. Concluding remarks and open questions 

We presented a new method which allows the user to include a priori knowledge about the problem 
under consideration in the finite element space. We illustrated this procedure in detail for a one- 
dimensional model problem with rough coefficients. For this one-dimensional example, we constructed 
local approximation spaces which reflect the rough behavior of the solution, and the PUFEM enabled 
us to build a robust finite element method from these local spaces. A numerical example illustrated the 
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robustness of the method and thereby showed the superiority of the PUFEM over the classical FEM for 
this particular kind of problem. With an application of the PUFEM to the Helmholtz equation in two 
dimensions we demonstrated that the PUFEM can cope with highly oscillatory problems in a very 
satisfactory fashion. 

We mentioned only very briefly the other features of the PUFEM. Among them are the ability to 
construct smoother space which are necessary for finite element methods for higher-order differential 
equations. Since the regularity of the PUFEM space is governed by the smoothness of the partition of 
unity, such smoother spaces are easily constructed with the PUFEM. The ‘meshless’ aspect of the 
PUFEM has also not been addressed in this paper. This is a feature of the PUFEM which can be 
important for problems which involve frequent remeshing such as the optimal placement of a fastener 
alluded to in the Introduction. 

We have seen that the PUFEM offers a new, very promising approach to dealing successfully with 
non-standard problems where the usual finite element methods fail or are too costly. Since the PUFEM 
is still in its infancy, there are also many open questions about implementational aspects which need to 
be addressed. Among them are: 

(1) The choice of a basis of the PUFEM space. We discussed this topic briefly in Section 3.5. It is an 
important issue because the condition number of the stiffness matrix depends on the choice of the 
basis. 

(2) The implementation of essential boundary conditions. We did not discuss this question because 
we concentrated on a one-dimensional model problem where essential boundary conditions can 
be enforced very easily. 

(3) The integration of the elements of the stiffness matrix. This is a difficulty which the PUFEM 
shares with all meshless methods. For the construction of the stiffness matrix, one has to 
integrate shape functions against each other. Thus, the integrator has to be able to integrate 
efficiently over the intersection of the supports of the shape functions. Since the shape functions 
are not necessarily tied to a mesh, the description of these intersections is potentially harder than 
in the usual FEM. However, specific choices of the partition of unity and/or appropriately 
designed integrators should be able to cope with the integration issues successfully. 
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