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Abstract

The paper presents the basic ideas and the mathematical foundation of the partition of unity finite etement method ( PUFEM).
We will show how the PUFEM can be used to employ the structure of the differential equation under consideration (o construct
cffective and robust methads, Although the method and its theory are valid in n dimensions, a detailed and illustrative analysis
will be given for 4 one-dimensional model problem. We identify some classes of non-standard problems which can profit highly
from the advantages of the PUFEM and conclude this paper with some opea guestions concerning implementatioral aspects of
the PUFEM.

1. Introduction

The aim of this paper is to present a new method for solving differential equations, the *partition of
unity finite efement method’ (PUFEM). We explain the mathematical foundation of the PUFEM and
discuss some of its features. The most prominent among them are:

{1) the ability to include a priori knowledge about the local behavior of the solution in the finite

element space;

(2) the ability to construct finite elemcnt spaces of any desired reguilarity (as may be important for

the solution of higher-order equations);

{3) the fact that the PUFEM falls into the category of ‘meshless’ methods; a mesh in the classical

sense does not have to be created and thus the complicated meshing process 1s avoided;

{4) the fact that the PUFEM can be understood as a generalization of the classical h, p. and hp

versions of the finite element method.
In this paper, we will mostly concentrate on the first of these four features. In particular, the
ong-dimensional example of Section 4 illustrates the fact that the PUFEM enables us to construct finite
element spaces which perform very well in cases where the classical finite element methods fail or are
prohibitively expensive. The success of the PUFEM in this example is precisely due to the fact that the
PUFEM offers an easy way to inciude analytical information about the problem being solved in the
finite clement space. A similar example was analyzed in {15] for a problem with a boundary layer.
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Again, the PUFEM permitted the construction of finite element spaces which account for the boundary
layer behavior and thus led to a robust method in the sense that the performance of the method is
independent of the actual strength of the boundary layer. An application of the PUFEM to the
Timoshenko beam with hard elastic support can be found in [16].

The paper is organized as foliows. The rest of Section 1 establishes that the two main ingredienats of
finite clement spaces are local approximation propertics and some interclement continvity. The
PUFEM constructs a global conforming finite element spacc out of a set of given local approximation
spaces—the precise construction is described in Section 2. Therefore, the PUFEM separates the issues
of interelement continuity and local approximability and allows us to concentrate on finding good local
approximation spaces for a given problem. In Section 3 we give a few examples of spaces with good
local approximation properties for several differentiai equations. A detailed example of the PUFEM is
presented in Section 4 for a one-dimensional model problem with rough coefficients. In Section 4 we
construct local approximation spaccs which reflect the rough behavior of the solution and show that
they are robust. The numerical example of Section 4.3 illustrates the robust performance of the
PUFEM. We conclude the paper in Section 5 with an application of the PUFEM to the two-dimensional
Helmholtz equation and identify some open questions concerning implementational aspects.

1.1. The finite element method

The finite element method (FEM)}) for the soiution of linear problems can be understood as follows.
The problem is formulated in a weak form

findu€Z: Blu,v}=Fv) VvEY (1)

where ¥, % are Hilbert spaces with norms || - ||, || - [, B : & x % — R is continuous and bilinear, and
F: % —R is continuous and linear. Of course, in ali problems of intcrest, the spaces &, % arc infinite
dimensional. In the FEM finite dimensional subspaces &, C ¥ (called the trial spaces), %, C ¥ (calied
the test spaces) of dimension » are chosen and the finite element approximation g, is defined as the
solution of

findu,, €&, : Blupp, v} =Flv) Vve¥, . (2)

In order for the approximations u,. to converge to the exact solution u, the following two conditions
are necessary:
® Approximabiliry: u can be approximated well by the subspaces Z,; at least, we need
inf{|lu - o], [vEX,}—>0C as n>x;
® Swbility: The bilinear form B (together with the subspaces Z,,, %) satisfies an inf-sup condition
{also known as the BB condition, see [1]).
In particular, if the stability condition holds, then problem (2) has a uniquc solution iy, which satisfies

llee — wpglls Ecui‘:ﬂf e — vl ¢ {3)

with u constant ¢ > () independent of u and n. Thus, the error of the finite element approximation
is—up to the constant C—as small as the crror of the best approximant in the space Z,. Therefore,
given stability, the performance of the finite clement method is determined by the approximation
properties of the spaces #, for the approximation of the solution u. These observations lead to the
problem of constructing spaces &, which arc conforming (i.c. & CZ) and which have good
approximation properties for the approximation of the exact solution wu.

1.2, Local approximability and interelement continuity

Let us now consider some of the classicai choices of the trial spaces &, and see how the condition 10
be conforming and the approximation properties arc realized. In many applications (e.g. the heat
equatton the clasticity equations in displacement formu]ation) the space & is a subspace of the Sobolev

space H We will therefore concentrate on the classical piecewise polynomial subspaces of H'. In the
i
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classical FEM the spaces &, are chosen such that they have good local approximation properties and are
conforming; more precisely, they are chosen to consist of piecewise polynomials {or mapped
polynomtals) and are continuous across element boundaries. In the A-version of the FEM, the
polynomial degree is fixed (typicaily, p < 2), and the approximation is realized by decreasing the mesh
size h. If the function u to be approximated is sufficiently smooth (in H*, say), an appropriate
interpoiant fu {for exampie, for p = 1 and piecewise linear functions on triangles. one can choose the
nodal interpolant) satisfies an estimate of the form

ll“_[”“HlE-Ck.pHmm(k_{lpilulﬁk (4)

where C, , is independent of u and A. We see that the approximation properties of these classical
h-version type finite element spaces are good whenever the exact solution is not ‘rough’. By ‘rough’ we
mean here and in the rest of this paper that either higher derivatives of & are not square integrabie (i.c.
the case that & is close to 1) or that they exist but are very large (i.e. |u|,« is big). In both cases. the
approximation with piecewise polynomial functions performs very poorly and the mesh size » has to be
chosen very small before a reasonable accuracy is achieved {cf. Section 4 and Lemma 4.1).

In the p version of the FEM the mesh is fixed, and the iocal approximation is realized by polynomiais
(or mapped polynomials) of increasing degrec. Again, continuity across the interelement boundaries is
enforced in order to ensure conformity of the finite element spaces. The error estirnates typically have
the form

lee = Rull o =< Cop ™ V] e (5)

and thus, the p version can be expected to work well whenever the exact solution is reasonably smooth;
however, the p version exhibits the same deficiencies as the A version whenever the exact solution is
rough.

In conclusion, the approximation properties of both the s and the p version of the finite eiement
method are based on the fact that

(1) (local approximability) a smooth function can be approximated locally by polynomials, and

{2) (conformity of the finite element spaces/interelement continuity} polynomial spaces arc big

enough to absorb exira constraints of continuity across interelement boundaries without loosing
the approximation propertics.

Conversely, any system of functions which have good local approximation properties and can be
constrained to satisfy some interelement continuity teads to a good finite clement method.

Let us first claborate the probiem of local approximability. There are many systems of functions
which have good local approximation properties. For certain types of equations, one can exploit the
structure of the differential equation to construct spaces of functions which can approximate the
solulion cven better than the spaces of polynomiais. In Scction 3 we give a few examples of spaces
which have very good approximation properties for the solution of Laplace’s equation, the homoge-
ncous Helmhoitz equation, and the elasticity equations in two dimensions. For example, for the
approximation of harmonic functions, it is enough to approximate locally with harmonic potynomials—
it is not necessary to use the full space of polynomials. In the exampie of Heimhboltz’s equation, we sece
below that local approximation can be done with systems of plane waves or with spaces based on radial
Bessel functions. Finally, in Section 4 we consider a one-dimensional model problem with rough
coefficients and construct spaces of functions (which take into account the rough behavior of the
coefficients of the differential equation) which have good local approximation properties for the
approximation of the {(also rough) solution. In this example, the PUFEM based on these special
functions leads to a robust method, i.c. a method which performs as wel as the classical FEM performs
for a problem with smooth coefficients. This is due to the fact that the special ansatz functions
incorporate the rough behavior of the solution.

Let us now turn to the problem of conformity of the finite ciement space / interclement continuity. We
have just seen that it is possible to construct many spaces of functions {typicatly non-polynomial} which
have good local approximation properties for the approximation of a solution u of a differcntial
equation. ln general, it is not possible to enforce conformity, i.¢. interelement continuity. for these
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non-polynomial local approximation spaces. The PUFEM, however, offers a means to construct a
conforming space out of any given system of local approximation spaces without sacrificing the
approximation properties. This is done as follows. Let {£2,} be a system of overlapping patches which
cover the domain £2 of interest. Let {¢;} be a partition of unity subordinate to the cover. On each patch
12, let V., C H'(£)) be a space of functions by which x|, can be approximated well. The global finite
element space V is then defined by £, V.. Theorem 2.1 below states that the global space V inherits
the approximation properties of the local spaces V), i.c. the function u can be approximated on {2 by
functions of V as well as the functions u|,, can be approximated in the local spaces V.. Moreover, the
space V inherits the smoothness of the partition of wnity ¢. In particular, the smoothness of the

partition of unity cnfosces the conformity of the globai space V.
1.3, Potential applications of the PUFEM

We already mentioned above that one potential field of applicatton of the PUFEM s problems where
the classical polynomial based FEM fail. In this catcgory fali problems where the solution is rough (or
highly oscillatory) and the usual piecewise polynomial spaces cannot resolve the essential features of the
soiution uniess the mesh size & is very small or the polynomial degree p is very large. In both cases the
computational costs are high or even too high for today’s computers. Examples of problems with rough
or highly oscillatory solutions are the elasticity equations for laminated materials, materials with
stiffeners, or the Helmholtz equation for large wave numbers to mention but a few. In Section 4 the
PUFEM is applied to a problem with rough coefficients.

Problems of singularly perturbed type or problems where the solution cxhibits a boundary layer can
also be dealt with very successfuliy in the framework of the PUFEM. If the singular behavior of the
solution is known, the PUFEM aliows us to incorporate this knowledge directly inio the finite clement
space. In contrast to this, the classical FEM has to use very small mesh sizes i order to resolve the
singular behavior of the soiution [15].

We mentioned above that the PUFEM falls into the general category of ‘meshless’ methods. This
feature might be exploited for certain probiems where the usual methods involve frequent remeshing.
For example, in the problem of the optimal placement of a fastener, the engineer has to try several
locations of the fastener. For each run, he has to remesh parts of the domain in order to account for the
changed position of the fastener. One could construct a local approximation space which models the
fastener and then changing the position of the fastener simply means changing the local approximation
spaces.

2. Mathematical foundation of the PUFEM

In this section, we present a method of constructing conforming subspaces of H '(£2). We construct
finite element spaces which are subspaces of H'(f2) as an example because of their importance in
applications. We would like to stress at this point that the method leads to the construction of smoother
spaces (subspaces of H*, k> 1) or subspaces of Sobolev spaces W * in a straightforward manner. The
main technical notion in the construction of the PUFEM spaces is the (M, C,, C;) partiton of unity.

DEFINITION 2.1. Let 2 CR" be an open set, {{2,} be an open cover of {2 satisfying a pointwise
overlap condition

IMEN Vxefl card{ixeN}sM.

Let {g} be a Lipschitz partition of unity subordinate to the cover {{2;} satisfying
supp ¢, C closure(d2,) Vi, (6}
2e=1 on@, (7}

el sy S Oy (8)
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where C,,, C,; are two constants. Then {¢} is called a (M, C,, C,;) partition of unity subordinate to the
cover {{2,}. The partition of unity {¢} is said to be of degree m €N if {¢} C CT(R"). The covering
sets {{2} are calied patches.

DEFINITION 2.2. Let {§2.} be an open cover of £ CR" and let {¢} be a (M, C,. C,;) partition of
unity subordinate to {£2,}. Let V, C H'(£2,N Q) be given. Then the space

V=2 A {2 ‘P:'U;'UEEV:} CH'({)

is calied the PUFEM space. The PUFEM space V is said to be of degree mEN if V CC™(£2). The
spaces V, are referred to as the local approximation spaces.

THEOREM 2.1. Let 2 CR" be given. Ler {41}, {¢} and {V.} be as in Definitions 2.1, 2.2. Let
u € H'(£2) be the function to be approximated. Assume that the local approximation spaces V, have the
following approximation properties: On each patch £}, N {1, u can be approximated by a function v, €V,
such that

”“ -, " L5, =€),
|| ¥ — U:)HLE(H‘ﬁﬁ) <€) .
Then the function

z‘p,UIEVCH #2)

i, i

satisfies
e =t |20 < VMC (2 €16)) (10)
C 172
IV = e My < VI (S (griy ) i+ o) i1

PROOF. We will only show estimate (11) because (10} is proved similarly. Let «,, be defined as in the
statement of the theorem. Since the functions ¢, form a partition of unity, we have 1-u= (%, o )u=
%, @u and thus

2

190~ My = |7 S )

I 2{1:}

szng Ve (u — + Z“Z @ V(u — v, }

‘I 240y Lny

Now, since not more than M patches overlap in any given point x € (2, the sums L, Vip,(u — v;} and
%, ¢, Vu — v,) also contain at most M terms for any fixed x € 2. Thus, |Z, Velu — v} <M I, [V lu —
v))* and [T, o ¥(u —v,)" <M E, [¢,%u — v,)|° for any x € £2. Hence, if we observe that supp ¢ C {2,

2
2 |z Voo, (u — “;‘)“i?(m + 2||z ¢Vu — v} oy

(s23

<2M Z "V‘Pi(u - izm) +2M 2 H‘P:'V(u Y

=M z )| Vepiue — U;)“i?{nfnm +2M 2 % = v i%n;nm
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<2M Z (me,(a + Cte;{:'))

which finishes the proof. [

REMARK 2.1. The constant M controls the overlap of the patches, In particular, not more than M
paiches overlap in any given point x € £2 of the domain. The patches have to overlap because the
functions ¢, are supposed to form a sufficiently regular (here: Lipschitz) partition of unity. Condition
{9) expresses the fact that we need to control the gradient of the partition of unity functions ¢, if we are
interested in H' estimates. Note that typicaily € (i) < C(diam £,)¢,(i) so that the terms in the sum of
{11} are in a sease balanced.

The usual piecewise linear hat functions on a regular (triangolar) mesh in two dimensions, satisfy the
above conditions of a (M, C,, C,) partition of unity; actually, M =3, C, =1, and condition (9) s
satisfied because of the regularity of the mesh, i.e. the minimum angle condition satisfied by the
triangulation. Similarly, the classical bilinear finite clement functions on guadrilateral meshes form a
(M, C_, C,;) partition of unity (M =4, C,=1}.

The PUFEM has approximation properties very similar to the usual s and p version if the local
approximation spaces ¥, are chosen to be spaces of polynomials. In fact, if the local approximation
spaces consist of polynomials of fixed degree p and the approximation in V, is achieved through the
smallness of the patch {2, the method behaves like the 4 version. If the patches are kept fixed and the
local approximation is achieved by increasing the degree p of the polynomials, which form the local
spaces V,, the method behaves like the p version. In this sense, the PUFEM is a generalization of the
and p version.

3. Examples of local approximation spaces

Let us consider a few examples of systems of functions which have good approximation properties for
the solutions to a given differential equation and additionally solve the differential equation themselves.
A minimal condition on such a system is that it be dense in the set of all solution. We will see that these
systems are not unique and that therc are many dense systems for a given differential equation. The
choice of a particular system thus depends on practical aspects (cost of constructing the functions, case
of evaluation of the functions, i.¢. cost of construction of the stiffness matrix; conditioning number of
the resuiting stiffness matrix) and theoretical aspects {optimality of the system; see Remark 3.5 below}.

3.1. Laplace’s equation
Let us begin with Laplace’s equation

—Au=0 (12)

on a bounded Lipschitz domain {2 CR’. The classical approximation theory in L™ with harmonic
polynomials leads to results of the following form.

THEOREM 3.1 (S2eg6). Let 2C R* be a simply connected, bounded Lipschitz domain. Let 22240
and assume that u € L*(£2) is harmonic on ). Then there is a sequence (u,), -0 Of harmonic polynomials
of degree p such that

[l - i, ”L‘(H] =C e_w”“”mm >
T U Ly ) L343y
WG — e M|~y < C & 7 fluefi

where vy, C > depend only on {1, 0.

PROOF. See {17, 20). O
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THEOREM 3.2. Let 2 be a bounded Lipschitz domain, star-shaped with respect to a ball. Lei the
exterior angle of §} be bounded from below by Am, 0<A<2. Assume that u€ H"(Q), k>1, is
harmonic. Then there is a sequence {u,) of harmonic polynomials of degree p = k ~ 1 such that

) L In p\ A ‘
”“_“p”Hf(mEC(d’amﬂ}k !( p ) ”“”H*mw j=0,... .1k}

where C >0 depends only on the shape of (1 and k.

See [8] for a proof of Theorem 3.2. Note that typically A =<1 and that for domains with re-entrant
corners, A can be significantly less than 1.

REMARK 3.2. The restriction in Theorem 3.2 that £2 be star-shaped with respect to a ball is not a big
constraint for our purposes because we are interested in local estimates on paiches and the patches are
typicaliy chosen to be star-shaped.

REMARK 3.3, We note that the error estimates of Theorem 3.1 are (up to the constants involved)
similar to the estimates one obtains for the approximation with fuli spaces of polynomials in that the
dependence on p is essentially the same. However, since the number of harmonic polynomials of degree
p is 2p + 1 and the number of polynomiais of degree p is p(p + 1)/2, the approximation with harmonic
polynomials is (asymptotically) better in terms of error versus degrees of freedom.

REMARK 3.4. We formulated Theorem 3.2 in an H' framework. Similar results in an L7 setting can
be found in {9}, for example. Those estimates aiso exhibi{ the loss in the rate of the approximability
when the domam 2 has re-entrant corners.

REMARK 3.5, Harmonic polynomials are not the oniy system of functions which are dense in the class
of solutions to Laplace's equation. For example, the systems {Ree™,Ime™|nEN,}, or
{Rcz ", Imz7"|nEN,} (if 0 ), or the system of rational functions are dense in the set of solutions
of Laplace’s equation. The system of harmonic polynomials is optimal in the sense of n-width for the
approximation of rotationally invariant spaces of harmonic functions on discs {see [15]).

3.2. Elasticity equations

The solutions of the equations of linear elasticity (in the absence of body forces) in two dimensions
can be expressed in terms of two holomorphic functions (see [10]). Let us consider the case of plain
strain on a bounded Lipschitz domain £ C R® and let A, u be the Lamé constants of the material (for
the case of plain stress, replace in what follows A by A* = 2Au /(A + 2u)). The displacement field (u, v)
can be expressed by two holomorphic functions ¢, ¢

2ufulx, y) + iv(x, ¥)) = ke(z) ~ 2¢'(2) —(2) (13)

where k= {A +3u)/(A +u) and we set z = +1iy. For a given displacement state, the holomorphic
functions ¢, ¢ are unique up to the normalization of ¢(z,} =0 in a point z,€ {2. Thus, we may
approximate the displacement field (u, v) by ‘generalized harmonic polynomials’

2u{u + v} = xg,(2) — 207(2) — ¥, (2) (14)

where the functions ¢,, ¥, are complex polynomials of degree p

P

9 2)= 2 a(z - z,)"

n=1

F:l
wp(z) = gn b(z—2z4)"
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with complex coefficients «,, b,.. In a real formulation, the displacements « and v are obtained by taking
the real and imaginary parts of the clements of the space V {as a vector space over R of dimension
2+ 4p)

V=span{l, i, (z —z,)", {(z — z,)",
K{z —~ z(r}n ~n{z - zu)(z 74" '
iz — z,) —infz — 2, )z — 2, |n =1,...,p}.

The approximation properties of these ‘generalized harmonic polynomials’ are very similar to the
approximation properties of the harmonic polynomials for the approximation of solutions of Laplace’s
equation. Obviously, in the case that the displacement fieid satisfies the elasticity equations on a domain
{122 0, the estimates of Theorem 3.1 produce similar estimates for the error in the displacement field
and stress field for the approximation with ‘generalized harmonic polynomials’. The analogous theorem
to Theorem 3.2 takes the form

THEOREM 3.3. Let Q CR’ be a bounded Lipschitz domain, star-shaped with respect to a ball. Lez the
exterior angle of ) be bounded from below by An. Assume that the displacement field (u, v) € H*(Q2),
k= 1. Then (u, v} can be approximated by ‘generalized harmonic polynomials’ of degree p =k — 1 such
that

. ey — ] YA W AN
||2,u.(u- +iv)— (K‘Pp —{z - Z(}}(Pp _%)”Hr{m < C{diam Q)k j*(‘T) (I e, U)”u*{m

for j =0, 1. The constant C depends only on the shape of {2 and k.

PROOF. The proof can be found [8]. A density assertion for these ‘generalized harmonic polynomials’
in the space of solutions of the elasticity equations can also be found in {6] (under stronger assumptions,
however). 0

REMARK 3.6. As in the example with Laplace’s equation, we are not restricted to using ‘harmonic
polynomials’. Analogous systems based on functions of the form e™, or polynomials in 1/z are also
dense in the set of solutions of the elasticity equations.

REMARK 3.7. The theory can be cxtended to problems with certain loads. In many practical
applications the load is simple (constant, polynomial} where an explicit particular solution of the
elasticity equations is known. Thus, augmenting the space V by this particular solution allows us to deal
with these problems successfully in the framework of approximating the sought solution by functions
which solve the differential equation.

3.3. Helmholtz’s equation

In this section let us consider the Helmholtz equation on a bounded Lipschitz domain 2C R’
~Bu—k’u=0 onCR (15)

where k >0 is the wave number. For this problem we discuss two sets of functions which have good
approximation propersties for the general solution of {15). Define ‘generalized harmonic polynomiais’ of
degree p by

V¥(p) =span{e™J (kr)ln=0,..., p} (16)

where we used polar coordinates (7, #) and the functions J, are the usual Bessel functions of the first
kind (see e.g. {5]}). The nomenclature ‘generalized harmonic polynomials’ comes from the fact that
these functions are the direct analogues of harmonic polynomials via the theory of Bergman and Vekua
([3, 19]). In fact, the approximation results for the approximation of harmonic functions with harmonic
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polynomials carry over to the case of the approximation of the solutions of (15} with ‘generatized
harmonic polynomials’

THEOREM 3.4. Let )} be a bounded Lipschitz domain, star-shaped with respect 1o a ball. Let the

exterior angle of (1 be bounded from below by An and assume that u € H'(}), s = 1, solves (15}. Then
there are functions u, € v¥(p) such that

. inp 7 ]
e =l = €25, ) (L) Nl 7001
where C{2, 5, k) >0 depends only on ), k and s.
PROOF. See [8]. O

As in the case of the approximation of solutions to Laplace’s equation, there are many other
alternatives to the choice of ‘generalized harmonic polynomials’. For example, one can approximate the
solutions of (15) with systems of plane waves:

2
Wip) = span{exp[ik(x cos f; + y sin 6,)]|6, = “;:T" j.oi=0,....p- 'i} ) (i7)

One can show that these systems of plane wave have approximation properties which are very similar to
the approximation with ‘generalized harmosic polynomials’

THEOREM 3.5. Under the same assumptions as in Theorem 3.4 there are functions u, € W{p) such that

In? p\ ¢ P '
e — ”H‘(ﬂ} = C(4, s, k)( ) ||“”m(ﬂ) . =01
where C{{}, 5, k) >0 depends only on £2, k and s.

What are the differences between the generalized harmonic polynomials and the systems of plane
waves? Just as the harmonic polynomials were optimal in the sense of n-width for the approximation of
rotationally invariant spaces of harmonic functions on discs, the generalized harmonic polynomials are
optimal in the sense of n-width for rotationaily invariant spaces of solutions of (15) for the special case
of {2 being a disc,

An advantage of systems of plane waves is that they might be casier to use in practical applications.
Plane waves can be written as products of functions of x and of y only; thus, if the patches consist of
rectangics aligned with the coordinate axes, then the iniegrals appearing in the stiffness matrix can be
written as products of one-dimensional integrals and ¢valuated cheaply. This observation has been
exploited in Section 5.1. Let us finish this section by mentioning that thesc ‘generalized harmonic
polynomials’ and the systems of planc waves lead to exponential rates of convergence if the function u
is analytic up to boundary:

THEOREM 3.6. Let 1} CR be a simply connected, bounded Lipschitz domain. Let 2504 and

assume that u € L>(§}) solves the homogeneous Helmholtz equation on (3. Then

i - = e n
uf,el'.rfigm e Hp ”H‘W} s=Ce "lull 2g, .

. &= e
b'pé!:‘g{ﬂ] [l ~ wp“H‘(m =Ce np“u"LE(ﬁ}

where C, C. y and § depend only on 0, 0 and k.
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3.4. Change of variables techniques: Rough coefficienis and elasticity equations with corners

The idea of the PUFEM is to enable the user to employ functions with good local approximation
properties. These functions do not necessarily have to solve the differential cquation. In fact, it can
sometimes be too costly to create ‘optimal’ functions, One method to create functions which have good
locat approximation propertiee is obtained by an appropriate change of variables. Let us assume that
the change of variables x — £ transforms the sought solution u into a function & which is smoother than
u. Then, this transformed function # can be approximated well by polynomiais P(x) This suggests that
a good choice for the approximation of u are the mapped ‘polynomials’ P(x) = P{x) where the functions
P are polynomials.

This idea has been analyzed for a model probiem with uniiaterally rough coefficients in [13] (the next
section considers in detail the one-dimensional analogue of the problem considered in [13]).

The idea of exploiting the improved approximation properties of mapped ‘polynomiais’ has been very
successfully applied to the problem of the elasticity equations with singularities {11, 12}, The natural
change of variables {in a two-dimensional setting} is a conformal map which makes corner singularities
or singularities arising at interfaces less pronounced. The mapped function can be appreximated well by
polynomials. Mapping the polynomials back under this conformal map leads to the ansatz functions
used.

3,5. The choice of the partition of unity functions

In the preceding subsections, we described various choices of local approximation spaces which have
better approximation properties than the spaces of polynomials of degree p. Let us now turn {o the
problem of the choice of the partition of unity which puts a given set of local approximation spaces
together to produce a conforming global space. The conditions on the pattition of unity are very weak:
a Lipschitz partition of uemity safﬁccs to construct a subspace of H' according to Theorem 2.1.

Let us consider a domain £ CR’. One possible choice of a partition of unity is a collection of finite
element functions. Let £ D {2 be any domain on which a mesh (consisting of triangles or rectangles,
say) has been defined. The usual piecewisc linecar or bilinear hat functions associated with the nodes of
this mesh form a partition of unity for {2 and therefore for {2 as well. The supports of these hat
functions can then be taken as the patches £,. If the mesh satisfies a minimum angle condition, this
partition of unity satisfies all the requirements of Theorem 2.1. This particular choice has been made for
the numerical example of Section 5.1.

A more general choice of a partition of unity is given by the following procedure. Let {{2,} be a
collection of overlapping patches which cover 2 and let {4} be a collection of functions which are
supported by the patches {2.. Then the normalization

=3 4 (18)

yields a partition of unity subordinate to the cover {£2,}. Note that for given / the sum in {18) actually
only extends over those j which satisfy £, 0 (2 »#. The functions ¢, inherit the smoothness of the
functions ¢, and thus this normalization techmque gives one possible construction of finite element
spaces with hzgher regularity, for example, subspaces of H°.

We have seen in the Introduction that a finite element method is completely determined by the
bilinear form and the finite dimensional trial and test spaces. in order to solve (2} in practice, we have
to find bases for the test and trial spaces. Since the finite element spaces V constructed by the PUFEM
are of the form V=1 ¢V, where the ¢, are a partition of unity and the V;, are the local approximation
spaces, it is natural to seek a basis of ¥ based on bases of the spaces V,. If {u, ,|p=0,. ..} are basis
functions of the local spaces V,, one can hope that the functions

B = {‘Piﬂi,p (19)

form a basis of V. However, there are a few cases, where the set 3 is not linearly independent. In order
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to sce this, let us consider 2 one-dimensional example. Define 2 =(0,1), h=1/n,x,=ih,i=0,....n,
£, ={x, —h,x,+ k), and let ¢ be the usual piecewise linear hat function associated with the node x,.
Now choose for the local approximation spaces V, =span{l,x,...,x"}, p EN. The PUFEM space V' is

then precisely the space of continuous functions which are piecewise polynomials of degree p + 1, te.
dimV=n{p+ i)+ 1. On the other hand, the set % contains n{p +1)+p + 1 elements. Thus, B
cannot form a basis of V. Of course, this particular example is somewhat contrived and in general the
set 9 will form a basis of V. However, this example shows that we may have 10 expect that the elements
of B couid be nearly linearly dependent which will lead to badly conditioned stiffness matrices,

One way to ensure that the sets & of the form (19} are linearly independent is to constrain the
partition of unity in such a way that cach function ¢, is identicaily 1 on a subset of (2, and ali other
tunctions ¢ vanish on this subset.

The linear dependencics in the one-dimensionai example above can be removed by a shight change of
the partition of unity functions. It is enough to change those partition of unity functions which are close
1o the boundary. Since we will use this particular partition of unity for the numcrical example in Section
4.3, we describe it in more detail:

x, =1ih i=1,....n—1
2, =(0.2h)
I)ﬂ.:(x!.—h‘xr—i-h} i=2,....n—2
0, =(1-211
1 i x €(0, h)
¥ = x—h i {20}
i- 7 if x & (h,2R)
X —x,
i+ h‘ HxeE(x,~h,x)
@ = i=2,...,.n—-2
x—x, i
i— — fxS(x,x; +h)
—(l-h
o 22U h) iExe(l-2h1—h)
ﬂpn—l_ h
l fxe(1-ha1)

4. A robust method for an equation with rough coefficients
4.1. Construction of robust local approximation spaces

In this section we want to construct a robust method for the approximation of the solution of an
equation with rough coefficients. As a mode! problem let us consider the clliptic boundary value
probiem

Lu=—{alxu'y + bixyu=f on2=(0,1) 21
W) =u(l}y =90 )

where the coefficients g, & € L7(£2) satisfy

0<a,<a<llall,-<=. O<b@ =<|b|

pe<<ec on (2,

We assume that the function f€ L. Observe that the solution u of (21) and the function au’ are
Lipschitz continuous, i.e.

u,au' €W ().

However, if a is merely in L™, we cannot expect the solution « to be in some H'7*(£2), € > 0. Thus, the
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classical piecewise polynomial finite element spaces may perform very poorly. In fact, the following
result holds:

LEMMA 4.1. Let b=0, f=1 in problem (21) and let d{n) be any sequence of numbers which
decreases monotonically to 0. Then one can find a function a € L™ with | < a{x) =2 and a constant C > ()
such thar for any n dimensional space V, of continuous, piecewise linear functions

“igi; et =, [l 111000, = CP) - (22)
PROOF. {2}. 11

The lemma shows that the usual finite element method may converge arbitrarily slowly (as the
number of degrees of freedom n is increased) if the coefficient ¢ is sufficiently rough. Note that (22)
holds for all spaces of continuous, piecewise linear functions, and thus we cannot improve the rate of
convergence by choosing the meshes judiciously. In practice. this means that the classical FEM breaks
down for these rough coefficients because ‘convergence’ is oaly achieved for extremely small mesh sizes
h.

REMARK 4.1. The case that the coefficients a,b are smooth but highly oscillatory (i.c. large
derivatives) is also covered by the ensuing theory. When the coefficients are smooth but highly
oscillatory, the cxact solution u may be smooth {in H’, say). but |lull;2pn, is so large that the
asymptotic behavior of the finite element method is visibie for very smail mesh sizes only. The special
ansatz function constructed below circumvent this phenomenon and lead to robust finite element
methods which behave as if the coefficients a.b were smooth (with reasonable bounds on the
derivatives},

The goai of this subsection #s to construct {local) approximation spaces for the approximation of u
which are robust in the sense that the PUFEM based on these ansatz functions behaves similarly to the
usuaj finite element method with smooth coefficients a, b and f. We construct spaces with any desired
order of approximability (for sufficiently smooth right-hand side f—the coefficients 4, b, however, are
still assumed to be merely in L™). In Proposition 4.2 we cxhibit such spaces. However, since the
functions of Proposition 4.2 are the solutions of auxiliary problems, which are not necessarily easier to
solve than the original problem, we present approximations of these functions in Theorem 4.1 which
have approximation properties as good as those of Proposition 4.2.

Define

llell,-

B a,

and let us consider the approximation of u on an interval f C {2 of length A by two functions u, u,
which form a fundamental system for L, i.¢. any solution v of the equation Lv — 0 can be expressed as a
linear combination of u,, u«,.

PROPOSITION 4.1 (Approximation with fundamental systems). Let u be the solution of (21), 1 C ) be
an interval of length h, and let u,, u, be a fundamental system for L. Under the assumption that
Bh=vy <1, there is u, €V =span{u,, u,} such that

lear -

u— gy Sy’
” uh”L D g (1—v)

1 ;
e =¥l oy = gy All il -

PROQF. Fix x, € 1. Choose u;, €V such that the function e = u — u, satisfies
Le=f e(x,}=10 (we' Yx,3=0.
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Then we have an explicit formuia for the error ¢
(e Y(x) = — J f—bedt. (23)
Since e(x,) = 0. we have (le||, -, <h|le’||, -, and hence {23} allows us to bound

ey S BNl e + 10 -Alle Nl oy

With the assumption that 1 — Bh = 1 — v we conclude

lﬁl(]”ei “ LN = "ae’l

1 .
“t’. "1_‘(!}5 ﬁ‘“(l _.},) ”)‘“.‘.‘U; . O

REMARK 4.2, One choice of the fundamental system is the following one. Let x, C/f be a reference
point and let u,, u, solve the initial value problems

Lu,=b ig(xy) =1 {aug)xy) =0

Lu, =0 u,(xy) =8 (aui)x,)=1.
Then the function

uy, = ulxyu, + {au’ Yx,Ju, €V

satisfics the estimates of Proposition 4.1.

We note that the estimates of Proposition 4.1 are robust in the following sense. The exact solution, in
spite of being merely in W', can be approximated with accuracy O(h) independently of the roughness
of the coefficients a and b: Only the bounds a, and |5}, . enter in the estimates.

Proposition 4.1 gives local approximation spaces which are first-order accurate. Let us now construct
local approximation spaces which have higher order of accuracy {assuming that the right-hand stde f is
sufficiently smooth). To that end we will augment the space V of Proposition 4.1 by particular solutions
to certain right-hand sides.

PROPOSITION 4.2 (Approximation with augmenied fundamental systems). Let u be the solution of
(21}, 1 C 12 be an interval of length h, x, € I be a reference poini, and let uy, u, be a fundamental system
for L. Let v,. i €N, be functions such that Lv, = {x - x,)". For pEN, U {—1} define the space

”

{span{uu, Uy by, 0,) i pENy
span{u,, u,} if p=—1.

Under the assumption that Bh <y <1 and f € C""'({2), there is u, €V, such that

k {p
[jee — “h”;."m = a7 Np T ) h.0+'!”f ' +””!.’°U} X

i
— ! prl [p+l}
li€ee — 22,) |IL'*(J1£%(1_Y)(p+1)!h It/ Wi mery -

PROOF. The case p = — 1 has been handied in Proposition 4.1. Let therefore p € N,,. Taylor’s theorem
allows us to write f=1%_, £ (x — xo)" + R(x) where ||R||, -, < ")/ (p+ DUIF'** Pl <sy. Then the
tunction e = — B4 _, f v, satisfies Le = R on I. Using Proposition 4.1 we can approximate ¢ with the
functions u,,, &, and arrive at the desired estimates. 0O

Proposition 4.2 permits us to construct robust methods of any desired order {assuming that the
right-hand side f is sufficiently smooth) if we can find the local approximation functions u,,, #,, vy, .. . .
In the special case b =4, these functions are explicitly avatlable:
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LI | H hl (e UH[
=1 u,(x)ZLImdr U,-(x):_i-g-jﬁo( a‘zz)) d-

In the general case, b # 0, finding u,, 4,, and the v, amounts to solving appropriate auxiliary problems
on [. In practice, we have to find approximations to the functions u,, 4,, v,. In the rest of this section
we will describe one method to approximate these functions and amaiyze how accurate these
approximations have to be. For the approximation of these functions, we will use the fact that they can
be written as the solutions of appropriate Volterra integral equations which can be solved by an iterative
method. We will see that only a few iterations are necessary to yield satisfactory approximations of the
functions u,,, u,. v,.

For the remainder of the section, let { C £2 be an interval of length s and let x, €7 be a reference
point in . Let us consider the initial vaiue probliem

Lw=g€ L") wix,) = w, (aw' Mx,)=w, . (24)

The function w is the solution of the following Volterra integral equation
w=Kw+w (25}
where the operator K and the function w are defined by
A i f )
(Kw¥x) = LJ ) L] b{ryw(r) dr dt (26}
7(x) = rid f—l— ' glr)dr d 27)
wlx) =w, + w, a0 t— T g(r)dr dr. {

L] el

The theory of Volterra integral equations (sce e.g. [7]) altows us to expand the solution operator
(I — K)™' in a Neumann series, and we can write

w=2 K" .
n=0
We introduce now approximations to the exact solution w by partial sums of this series:

N

W o Z}U K'% ifNEN, (28)
G ifN=-1.

We need to estimatc w—w". The next two lemmas clarify the approximation properties of the

approximants w" .

LEMMA 4.2. Let the operator K be defined as in (26). Then for any w € L™(I) and any n €N, we have

nlx — xolﬁn

\ B
K W) =550 Iwlle-g, »

|(KHHW)’(X)I = (2n + 1}t ”w”L*(!)
where again B =a; '||b]j, -.

PROOF. The first estimate is the classical estimate for Volterra integral equations (in a ¢ setting) and
may be proved by induction. The second estimate follows from the first one with the observation

(KK " wy(x)] =

<B I L (K" w)(r)| dt | . a

l X
) L" BEN(K "w)ir) dt



J. .M. Melenk, | Babuska | Comput. Methods Appl. Mech. Engrg. 139 (1996) 28¢-314 303

REMARK 4.3, Lemma 4.2 shows that the fixed point equation (25) can be solved by a Neumann series
cxpansion in an C° or an W'” setting. The Neumann series converges for any h > 0.

LEMMA 4.3. Let w be the solution of the fixed point problem (25) and let w" be the approximation
given by (28} for NEN U {—1}. Then

w0, e =B 2N R B oy

Ny hENHCJ(N,h-B)“";":.*m if NEN,
6w —w )”;*u)é =4y ~ g
' ”W ||.{.'-‘(n +hCy(0, A, B)”W”L’*m ifN=-1

where C,, C, are defined by

X BYT & N+ 2 i

Ci(N.h, B)= (2N + 2)! 2} (2N + 2n + 2}t (B)"
BY' & 2N+ 1

C(N,h,B)= > ( ) (BhY" .

QN+ 1) 2, (2N + 21 + 1)!

«

PROOF. We can write w—w" =L7_ K™% and use the bounds on the operators K" obtained in
Lemma 4.2. O

REMARK 4.4. Under the assumption w € W' (I}, w(x,) =0, the estimate on (w—w") can be
formaulated in the following, more compact form:

10w = WY1, oo < B 2N, B, -0
where C, is given by

C,{N, h. B) if N EN,

GV, h. B} = {1 +RC(0,h, B) ifN=—1.

REMARK 4.5, Under the assumptions Bh <y <1, A <1, we can easily bound C,, C, by
N+l

QN +2) T —yh

C/(IN. A, BY= for NeN, U {1},

A+l

1
(2N +2)1 1— vk

C{N . h. B)= for NEN,, .

This analysis of the fixed point problem (25) is now the tool for the approximation of a fundamental
system u,, u, and for the approximation of particular solutions v,. Let u,, u,, v, be given by

Luy=0 by(xg) == 1 {aug}xy) =0
Lu, =9 i,{xy) =0 (aui)(xg) =1
Lv, =(x — x,) v{xo) =0 (av){x,3=0
which are solutions of problem (25) for appropriately chosen w,, w, and g. Let uj), ul and v).

NeN,U{-1}, be the approximations to the exact solutions as defined by (28). Then, the following
lemma holds:
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LEMMA 4.4
leey = “(T“L*u) “’""‘hZN+2C| (N.h, B)
(O u:)!"L"H} EhZN”C‘J(Nv k. B} for NEN,

. . 1
ooy =l (| xiy < A7 CUNL B) -
4]

7 '+ i
||(u1_“?r)'||mn5h'h 2C3(N»h.-8);;

|

N TN+ At i - r
v, —v; "L“m <h Cy(N, h, B) ayli + 1Mi +2)

Ny NI+
@, = oYl e, <k Ci(N, A, B)_—_az,(f Ty

PROQF. The proof follows directly from Lemma 4.3 and Remark 4.4, [

We wouid like to construct an approximation of the space V, of Proposition 4.2. Lemma 4.4 enables us
now to calculate how many terms of the Neumann expansion suffice. Recall that the error estimate of
Proposition 4.2 for the ape{roximation in V, is O(r® *2y (for the error in the derivativc). The
approximations u} , vy and v, have to be calculated with the same accuracy. This gives for the number
of terms:

pti

N, 25— for the approximation of u,
N, 2% for the approximation of u,
~ p—i 1 o

N;z="—5—— for the approximation of v,

where Ny, Ny, N EN, U {~1}. Choosing the smallest N,, N, and N, such that these three inequalities
are satisfied, we can define

8 Yo ul uili=0, .. for pEN
K/};: Span{ug 9"31 sU.- |£ " ‘p} or p L4 (29)
span{u,, u;} forp=-1.

For example, we have

~ * i
V., =span{uy, u)} :span{l,j mdt}
o
Fy 1 A X I_xo

~ t ]
V, =span{u}, u),vp} = span{? +£ @ ). b{r) dr dt,j mdr, L T(t}”dt}

] Ay

1 1 0 g
Vi =span{uy, uy, v,.0)}
o S S B B
V, =span{uy, u,, Vs, Uy, U, } -
We now show that the space i;i, has indeed the desired approximation propertics, i.¢. the approximation

properties of V, are essentially the same as those of the spaces V.

THEOREM 4.1 (approximate augmented fundamental system). Let 1C {1} be an interval of length h,
xo € I be any reference point in 1, and let u be the solution of (21). Letp EN U {1}, f& crri), v,
be defined as in (29} and assume that Bh <y <1. Then there is u, €V, such that

"“ - uh”:_,“’{.‘) = hP*BC(P: B.ay,, ’Y)”f“cf” gy »
”(“ - uh)'”r,"m = hp)rzC(Pa B, a,, ?’)”fﬂcv'-lfm

where C{p, B, a,,y) depends only on p, B, a,, v and (1.
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PROOF. The proof follows very closely the proof of Proposition 4.2. Let us write

{nl
=3 L) Ry

Al

where the remainder R(x) satisfies ||R|| =, <(h** ")/ (p+ DU F* V[, -, 1f we agree to assign the
empiy sum the value 0, the estimate for R also holds for p = —1. The approximant of Proposition 4.2
could be chosen to be {cf. also Remark 4.2)

” {a)
: S xy)
oy = Wl tg + (@ Yoy + 2 =5,
Because the functions v, satisfy v,{x,) = (av, }(x,) = 0, the error r = u — u,, satisfies
Lr=R r{x,)= 0 {ar' ¥x,) =0,
Let us approximate u in 17 by

Mg z f‘n)(xu) :\

uy, = ulxg Jup + (au’ Yooy

£l

and we get the following representation for the error:

r {n}
S f n(!xa)

=i

w1, = ulxg )i - uy0) + (au Yo )u, —ul) + @ -vy+r.

From Lemma 4.3 with N = —1, we can bound r
h7 _hpﬂ - tptij
l:rilf (.‘:““C( l h B} "R"L (!)‘“C( 1 h B) (p_;_z)l ”f ”1 Ty

P2

”r'“.f,"{f) Ci{—-1. A, B) "R"L = CG{(-1, 4, B)Wﬂfwﬂ}“r N

Applying the estimates of Lemma 4.4 to the remaining terms of the error representation finishes the
proof, if we observe that |lu|l, -, [|au’ll <., can be bounded by Cla,, B, )| f||, -a); Clag, B, £2)
depends only on a,, B, and £ according to standard reguiarity theory, [

REMARK 4.6. The approximation properties of the space V | can be understood with the ideas of
Section 3.4 as well. If one introduces the change of variables ¥ = {; 1/a(t) d¢, then problem (21) is
transformed to a problem of the form

—d"+bi=f

where b, f are still in L.” and hence & i € W»™. The clements of V_ , transform to linear functions.
Therefore, the approximation of u in V_ , can be expected to behave like the approximation of a W~
function by linear functions.

4.2. Construction of the global finite element space

We will now construct a global conforming finite element space from the spaces V fcf. (29)), which
have good local approxlmatmn properties for the approximation of the solution of (2!) We proceed as
outlined in Section 2. Let (€2,)Y., be a covering of £ = (0, 1) satisfying the overlap condition. Let (¢},
be a (M, C,.. C;) partition of unity associated with this covering (£2,). The local approximation spaces V,
are given by Theorem 4.1 as follows. In each patch, we choose a reference point z, € £}, {which plays
the role of the point x; of Theorem 4.1). For p €N, U {—1}, the local approximation spaces V, = V|( p)
are then taken as the spaces V of (29) with refercncc point z, instead of x,,. Theorem 4.1 immediately
gives for the local approxlmauon properties {expressed in the notation of Theorem 2.1)
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& (i) < C(p, B.ag, vy, 2)diam 2)" 7N fll corgy »
Ez(“) = C(p, B. Dy ¥s 'Q)(diam Qr‘)p+2+Uz’lfllcf’”(n} M

We define the global approximation space V=V(p) =L | @V.(p). Hence, for u solving (21), there is
u, € V(p) such that

i3 2
||u — U, NLE({_,} = mC‘IC(p, B‘ Qi Ys {2)|ifllc;)+|(!?)(§ (dlam Ql_)2(p 1 3)+I)

— N 12
Gt = 2,5l 20y 2ZM(CG + C)C(p, B, g v, D £l o 'u})(g (diam Qr.)z(pﬁ"") .

So far we have not dealt with the essential boundary conditions at x =0 and x = 1. However, they are
easily enforced by a judicious choice of the reference point for the patches f2, close to the boundary, i.c.
12, M348 # 9. For these patches, we choose the reference point z; to be the boundary point and then
simply leave out the approximations u)" to u, because all the other elements of ‘lz; vanish at the
reference point. The finite element space V{p) is thus a subspace of H'(£) and satisfies the boundary
conditions, t.e. it is a conforming finite element space.

Let us give a more concrete example of the abstract procedure given above for the construction of the
global space V(p). Let n €N, h = 1/n and define the patches (2, and the partition of ugity ¢, as in Egs.
(20). The local approximation spaces V,(p) associated with the patches {2, are given by (29) where the
reference point in each patch {2, is chosen to be the node x, fori=2,. .. ,n — 2, For i =1 the reference
point is chosen to the left boundary point x =0 and for i =n — 1 the reference point is chosen to be
right boundary point x = 1. The approximation space V,{ p) and V, _,{ p} associated with the first and
last patch are constrained to satisfy the essential boundary conditions by omitting the approximations to
u,. For example, the two simplest spaces arc

X 1 X l x
Vi—1)= span{zpl(x) jﬂ W dr, ¢, _ i(x)ﬁ m dt, @.dx), odx) j (t) atli = ceant— 2} (33)
. [P G fgd
(0) = spany ¢, (x) a(t) L. @ (x) o alt) 1, @, 4{x) . a() £,y {x) alt) !
:p,(x)(l + f ) J. b{r)dr dr) q:;(x)] —— dr, (p!(x)f dfll = N 2} . (3D
The above theory gives that the spaces V{— 1}, V{0) approximate the solution # of (21) such that
. E‘}}(f - [l — uh”:}(m + h||(u - “h}’”L?(m < C(B,ay, V)., ] :hz (32)
. ier}/f{m et — el 2y + Al - uhﬂl:}(n} =C(B,a,. Y)l\f”c’(mh] (33)

where the constant C(B, a,,v) depends only on B, a, and v if Bh=vy <. Let us note that
dmV(-1)=2{n—-3)+2 dmV{0)=3(n-3)+ 4. (34)

4.3. Numerical example

In this subsection, we apply the above constructed finite clement spaces to a concrete differential
equation. We consider

Lu=—(a(Nxju'y +bu=f(x) onf2=(0,1)
(M =u(1)=0

where the function a is I-periodic, NEN large, and the coefficient & is either b=0¢ or b=1. The
right-hand side f is taken to be f=x for b =0 and f=1 for b =1. For the 1-periodic function a, we
consider two cases:

(3%)
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1
alny = 2 + cos{2mx)

1 ifxe(, 1)
“f(x)z{z ifxe (1),

The solution of (35) is in H*({2) (even piecewisc C”) for both choices of the coefficient . However, the
sotution is rough in our terminciogy as it has very large higher derivatives.
Associated with this problem is the notion of an ‘energy’

1
lully = | avoylu? + bul? ox
1)

and an ‘energy’ norm, which is the square root of the energy.

The typical behavior of the classical piecewise polynomiai finite clement methods for this particular
problem is to converge (in the energy norm} for very small mesh size only, namely when the mesh size
h is so small that the finite element space can resolve the oscillation of the coefficient a. The classical
finite element methods therefore converge for <N ™' oaly.

By the method outlined in the preceding subsection, we can create robust approximation spaces of
any desired order for the approximation of (35). However, we restrict ourselves here to the two spaces
V{—1). V(0) defincd in (30}, (31). For comparison, let us introduce a third type of space, namely, a
space where the local approximation spaces consist of polynomials. Using the same partition of unity
{¢} as in the comstruction of V{—1), V{0) (cf. (20)), we define

Vpol_\' = Span{wi T Dy 1’ (x - 1)a @ (x _xi)ii = 2’ N 2} M (36)
This space V,; contains all piecewise linear functions and is a subset of the usual piecewise quadratic

finite element space. It wiil therefore serve as a comparison of the usual finite element method with our
robust spaces.

Figs. 1 and 2 show the performance of the three spaces V(0), ¥(—1), and V. for the coefficient a4,
for the cases b =0, N = 4096, and b = 1, N = 52 488 whereas Figs. 3 and 4 correspond 1o the coefficient
4, for the cases b=0, N=409, and b=1, N=52488. In all the graphs, the mesh size ranges from
h =} to h =5 Eq. (34) relates these mesh sizes to the number of degrees of freedom; in particular,
the number of degrees of freedom is proportional to 1/4 for both V(—1) and V(0). Therefore, estimates
{32}, (33) yield bounds of the form

rel. error in energy < C dof %, C dof™* (37

for the approximation in V{—1) and V(0), respectively. The size of the constant € is independent of the
roughness of the coefficient @, i.e. it is independent of the number N. We can see in Figs. 1-4 that these
rates of convergence are actually attained and that the method is robust: Estimates (37} hold for very
few degrees of freedom and the good behavior of the method is independent of N {the PUFEM
performs equally weil for the cases N =4096 and N = 524 288). The spaces V,,,,, behave in a totaily
different way. Since the graphs cover only the range h =1 to h = Lo, we still have # > N ™' and cannot
expect the usual finite element method to work. Indeed, the error stays almost constant over the whole
range.

We considered two cases b =0 and b = 1. The difference between those two cases lies in the fact that
for b =0 the spaces V{—1) and V() are based on local approximation spaces which contain an exact
fundamental system whereas in the case b =1 the local approximation spaces contain only an
approximate fundamental system. We see, however, that the approximate fundamental system is
accurate enough not to upset the rate of convergence, just as the theory of Section 4.1 predicts.

Finally, let us mention that we chose a2 problem with periodic coefficients for computational
convenience. In this particular case, the periodicity could be exploited in such a way that the
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construction of the stiffness matrix and the evaluation of the right-hand side is achieved with an amount
of work independent of the number N; the work is—up to a constant—the same as for the usual finite
element method for N = 1.

This numerical example shows that the PUFEM based on the iocal approximation spaces constructed
in Section 4.1 leads to a robust method: The performance of the finite element spaces V{—1), V(D) is
independent of the roughness of the coefficients of the differential operator and their performance is
comparable to the classical piecewise linear or quadratic finite element spaces for a problem with
smooth coefficients.

5. Helmholtz’s equation and corcluding remarks
5.1. Helmholtz’s equation

In this section we present an application of the PUFEM to the Helmholtz equation in two
dimensions. We consider the problem

—Au—k'u=0 onf2=(0,1)x (0 1)CR’

38
dutiku=g on a2 (38)

where g is chosen such that the exact solution is a plane wave of the form

wix, yy=-cxpf{ik(xcos 8 + ysin8)} , 8 _E

In Section 3.3 we discussed two types of local approximation spaces for the approximation of solutions
of Helmholtz’s equation. We could take either the ‘generalized harmonic polynomials’ of (16) or the
systems of plane waves (17). In the numericai examples presented herc, we concentrate on the systems
of ptane waves (for a comparison of these two different local spaces, sce [8]). The partition of unity for
this particular problem is given by piecewise bilinear hat functions: For n €N, the square 2 is
subdivided into n X n squares of side length £ =1/n. With each of the (n + 1)> nodes (x,, y,) we
associate a piecewise bilinear hat function ¢, which vanishes in all rodes except {x,, y;}. The patches {2,
are taken to be the supports of these ¢. The PUFEM is based on this partition of unity and the local
approximation spaces V, are chosen to be the spaces W{p) of (17).

REMARK 5.1. In this particular implementation we only used the space W(p) with p of the form
p=4m+2, mEN, o ensure that the exact solution of problem (38) is not in the PUFEM space.

In this application of the PUFEM, we have thus two parameters which influence the approximation
properties of the global finite element space, namely, the mesh size of the partition of unity, which is
determined by n, and the size of the local approximation spaces V;, which is controlled by p. If the
parameter p is fixed and the mesh size is variable, we talk about the # version of the PUFEM,; if the
mesh is fixed and the approximation is achieved by increasing the size of the local spaces (i.e. by
increasing p), we talk about the p verston of the PUFEM. If both & and p are varied, we would then
talk about the Ap version of the PUFEM. The estimates on iocal approximability of Theorem 3.6 let us
expect cxponential rates of convergence as a p version. This exponential convergence of the p version
of the PUFEM can be observed in Fig. 5 for the cases n=1and n =2

We will discuss the numerical results only briefly; a more detailed analysis can be found in {15]. In
Tables i1-6 the PUFEM is compared with the usual Galerkin finite element method (FEM), the
generalized least squares finite clement method {GLS-FEM) of [18], and the quasi-stabilized finite
element method (QSFEM) of [14]. Since all three methods are based on piecewise linear functions on
uniform grids, Tables 1 and 2 include the piecewise linear best approximant for reference. in Tables
1-4, we use the norm L’ as the error measure and analyze the case & = 100. Tables 5 and 6 deal with
the case k = 32 and the H' semi norm as the error measure. Tables 1 and 2 show that the p version of
the PUFEM needs markedly fewer degrees of freedom to achieve the same accuracy in L’ as the other
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rel. error in HM1 semi norm of PUFEM for k=32.0
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Fig. 5. The p version of the PUFEM.
Table i
DOF necessary to obtain accuracy € in L° norm; k = 100
€{%} Hest p.w. linear OSFEM GLSFEM FEM
approximant
1 2.045D +3 3.969D + 3 20160 +4 778D + 4
1 501D+ 3 L.OXD +4 6.150D + 4 2.352D + 5
5 8.464D + 3 1.96GD + 4 1.274D + 5 4.692D + 5
Table 2
DOF necessary to achieve various accuracies in L* for PUFEM with n = 4 and various other methods; & = 100
P L7 error (%) PUFEM Best approx. OSFEM FEM
26 10.8 6.50D +2 380D +3 795D+ 3 208D + 5
30 (.69 7.56D +2 59D+ 4 1.23b + 5 323D +6
34 011 B.50D +2 345D+ 5 7.23D + 3 1.90D +7
Tabie 3
Number of operations using band elimination—the p version of the PUFEM; n=4; k= 1¥; error in L°
o L? error { %) PUFEM QSFEM FEM
26 1.8 1.76D +7 63D+ 7 43D + 11
30 0.69 271D+ 7 £.5D+ 19 101D + 13
3 0.11 394D+ 7 52D+ 11 3.6D + 34
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Table 4
Number of opcrations for Ap version of PUFEM; k = 1(¥); L™ error
P n L error (%) NOP PUFEM
26 4 10.8 176D +7
18 2 10.6 5.23D+ 7
14 i6 4.5 275D+ 8
Tablc 5
Operation count for solving linear system; error in H' norm; k=32
Galerkin QSFEM
VDOF H' error (%) No. iter NOP H'error (%} No. iter NOP
32 65 232 4512+ 6 30.5 272 5.29D + 6
64 217 434 3310+ 7 14.3 492 382D +7
128 .16 831 20812 + 8 7.02 953 296D <8
256 364 1665 207D+ 9 3.48 1863 231D +9
512 1.72 3263 1.62D + 16 i.69 3752 1.86D + 10
Table 6
Operation count for band elimination for PUFEM; k =32, error in H'; n=1
P H' error (%) NOP PUFEM
ig 46 1.3D+5
22 6.7 23D +35
26 0.38 38D +5
30 G.00025 59D +5

methods, which are based on piecewise linear ansatz functions. This reduction in degrees of freedom
transtates in a reduction of the number of operations when the linear system is solved using Gaussian
elimination. This is demonstrated in Table 3. In Table 4 we list the various combinations of p and n
which lead to the same accuracy of 10% in L°. Since we expect the PUFEM to exhibit exponential rates
of convergence as a p version but only algebraic rates as an A version, the number of operations is
smallest for the largest mesh size 4. In Tables 5 and 6 we compare the operation count of the Gaussian
elimination for the PUFEM with the operation count of the Galerkin method and the QSFEM. The
linear systems in these latter two methods are solved by the iterative method proposed in {4]. We see
that here again, the PUFEM performs better than the other two methods.

We have seen that the PUFEM is superior to the other methods both in terms of error versus degrees
of freedom and error versus number of operations. Let us point out that the discrepancy between the
PUFEM and the other methods becomes larger as the accuracy requirement s increased.

REMARK 5.2, We used systems of plane wave as local approximation spaces because their specific
structure and the particular form of the partition of unity allowed us to create the stiffness matrix
cheaply. Therefore, the overall amount of work for the PUFEM is dominated by the operation count of
the Gaussian elimination.

5.2. Concluding remarks and open questions

We presented a new method which allows the user to include a priori knowledge about the problem
under consideration in the finite element space. We illustrated this procedure in detail for a one-
dimensional model problem with rough coefficients. For this one-dimensional example, we constructed
local approximation spaces which reflect the rough behavior of the solution, and the PUFEM enabled
us to build a robust finite element method from these local spaccs. A numerical example Hlustrated the



J.M. Melenk, I. Babuska | Comput. Methods Appl. Mech. Engrg. 139 (1996) 289314 33

robustness of the method and thereby showed the superiority of the PUFEM over the classical FEM for
this particular kind of problem. With an application of the PUFEM to the Helmholtz equation in two
dimensions we demonstrated that the PUFEM can cope with highly osciliatory problems in a very
satisfactory fashion.

We mentioned only very briefly the other features of the PUFEM. Among them are the ability to
construct smoother space which are necessary for finite clement methods for higher-order differential
equations. Since the regularity of the PUFEM space is governed by the smoothness of the partition of
unity, such smoother spaces are easily constructed with the PUFEM. The ‘meshless’ aspect of the
PUFEM has also not been addressed in this paper. This s a feature of the PUFEM which can be
tmportant for probiems which invoive frequent remeshing such as the optimal placement of a fastener
alluded to in the Introduction.

We have seen that the PUFEM offers a new, very promising approach to dealing successfully with
non-standard problems where the usual finite element methods fail or are too costly. Since the PUFEM
is stil in its infancy, there are also many open questions about implementational aspects which need to
be addressed. Among them are:

(1) The choice of a hasis of the PUFEM space. We discussed this topic bricfly in Section 3.5, It is an
important issuc becausc the condition number of the stiffness matrix depends on the choice of the
basis.

{2} The implementation of essential boundary conditions. We did not discuss this question because
we concentrated on a one-dimensional model problem where essential boundary conditions can
be enforced very easily.

(3) The integration of the elements of the stiffness matrix. This is a difficulty which the PUFEM
shares with all meshless methods. For the coanstruction of the stiffness matrix, one has to
integrate shape functions against each other. Thus, the integrator has to be ablc to integrate
efficiently over the intersection of the supports of the shape functions. Since the shape functions
are ntot necessarily tied to a mesh, the description of these intersections s potentially harder than
in the usual FEM. However, specific choices of the partitien of unity and/or appropriately
designed integrators should be able to cope with the integration issues successfully.
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