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SUMMARY

A new finite element method is presented that features the ability to include in the finite element space
knowledge about the partial differential equation being solved. This new method can therefore be more
efficient than the usual finite element methods. An additional feature of the partition-of-unity method is
that finite element spaces of any desired regularity can be constructed very easily. This paper includes
a convergence proof of this method and illustrates its efficiency by an application to the Helmholtz equation
for high wave numbers. The basic estimates for a posteriori error estimation for this new method are also
proved.
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1. INTRODUCTION

We present a new method, the Partition of Unity Method (PUM), which allows for the
construction of conforming ansatz spaces with local properties determined by the user. The
development of this method was motivated by the need for new techniques for the solution of
problems where the classical FEM approaches fail or are prohibitively expensive; for example,
equations with rough coefficients (arising e.g. in the modelling of composites, materials with
microstructure, stiffeners, etc.) and problems with boundary layers or highly oscillatory solutions
fall into that category. The approach taken in the PUM is to start from a variational formulation
and then design the trial (and test) spaces in view of the problem under consideration.

The main features of the PUM are the following.

1. The PUM permits inclusion of a priori knowledge about the differential equation in the
ansatz spaces.

2. The PUM allows us to construct easily ansatz spaces of any desired regularity; therefore,
trial spaces for the use in variational formulations of higher-order differential equations (e.g.
various plate and shell models) are available.
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728 I. BABUSKA AND J. M. MELENK

Let us elaborate these two features in more detail as they represent the core ideas of the PUM:
The first point is related to the local approximation properties of the spaces constructed by the
PUM, whereas the second point is intimately linked to the conformity of these spaces.

A necessary condition for an ansatz space to perform well is that it can approximate the
exact solution well locally. In the classical FEM, this local approximation is achieved by
(mapped) polynomials. However, if analytic knowledge about the local behaviour of the exact
solution is available, local approximation may be done with functions better suited than
polynomials. Therefore, in order to illustrate the first feature of the PUM, let us give a few
examples of problems where analytic knowledge about the local behaviour of the solution is
available. The simplest example is provided by Laplace’s equations, — Au = 0, in two dimen-
sions. Locally, the solutions of Laplace’s equation can be approximated by harmonic polynomials
(i.e. polynomials which satisfy Laplace’s equation) of degree p, and this approximation is
essentially as good as the approximation with all polynomials of degree p (see Section 7.1).
However, there are only 2p + 1 (linearly independent) harmonic polynomials of degree p, whereas
the dimension of the full spaces of polynomials of degree p is O(p?). This simple example extends
to elliptic equations with analytic coefficients. There too, it is possible to define ‘generalized
harmonic polynomials’ which have approximation properties similar to those of the harmonic
polynomials.! ~3

For Laplace’s equation or the elasticity equations, corners or sudden changes of boundary
conditions introduce certain types of singularities. A precise description of these singularities can
be used to construct very efficient non-polynomial shape functions to deal with these singular-
ities® 7 (see also Section 5.1).

The classical FEM relies (among other things) on the local approximation properties of
polynomials. For certain types of problems, such as equations with rough coefficients or
problems with highly oscillatory solution, polynomials have poor approximation properties. As is
shown by Babuska et al.,® the choice of non-polynomial ansatz functions which are custom
tailored to the problem leads to optimal rates of convergence, whereas the classical FEM, relying
on the approximation properties of polynomials, perform extremely poorly. A similar situation
arises in the approximation of highly oscillatory functions, e.g. the solutions of Helmholtz’s
equation. It was demonstrated by Melenk® that the approximation with plane waves displaying
the same oscillatory behaviour as the solution can be very efficient.

Finally, another example where non-polynomial approximation spaces are of interest is
furnished by problems on unbounded domains. For problems such as Laplace’s equation or the
Helmholtz equation, expansions of the solution around the point at infinity are known, and it
may be desirable to build ansatz spaces based on these expansions. The PUM provides the
framework to do so (cf. also References 8—12 and references therein for the use of so-called infinite
elements in a more conventional setting).

Let us now turn to the second feature of the PUM, the ability to construct ansatz spaces of any
desired regularity. In order to see this, we need to describe briefly how the PUM works—a more
detailed description can be found in Section 3. Let overlapping patches {€;} be given which
comprise a cover of the domain Q, and let {¢;} be a partition of unity subordinate to the cover.
On each patch, let function spaces V; reflect the local approximability. Then the global ansatz
space V is given by V' =Y, ¢; V. Local approximation in the spaces V; can be either achieved
by the smallness of the patches (an ‘h version’) or by good properties of V; (a ‘p version’).
Theorem 1 below states that the global space V inherits the approximation properties of the local
spaces V. Additionally, it inherits the smoothness of the partition of unity (and the spaces V). In
particular, the global space V' can be made to be conforming by choosing the partition of unity
judiciously. Moreover, the construction of smoother ansatz spaces, which are necessary for the
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THE PARTITION OF UNITY METHOD 729

use in variational formulations of various plate and shell models, is easily possible by using
a partition of unity which is sufficiently smooth.

For a successful implementation of the PUM, three issues have to be addressed. We will merely
state them here and note that they are intrinsically similar to the implementational issues of the
meshless methods discussed in Section 2.3.

1. The integration of the shape functions constructed by the PUM.

2. Finding a basis of the PUM space and controlling the condition number of the stiffness
matrix created by the PUM.

3. The implementation of essential boundary conditions.

The paper is organized as follows. In Section 2 we discuss the relation of the PUM to other
methods, namely, the h—p version of the FEM and the various meshless methods proposed
recently. In Section 3 we develop the PUM and give a proof of its approximation properties. In
Sections 4.1-4.4, we illustrate some of the features of the PUM in a one dimensional setting. In
Section 4.1, we demonstrate how the PUM produces robust finite element spaces for a problem
with a boundary layer. The performance of the PUM for this particular problem is comparable to
the usual finite element methods for problems with smooth solutions because the PUM allows us
to create finite element spaces which capture precisely the behaviour of the boundary layer.
Section 4.2 proposes several types of partitions of unity which satisfy the necessary conditions for
the PUM to work. Section 4.3 analyses in more detail the case of polynomial local approximation
spaces. In particular, the problem of potential linear dependencies and the issue of the condition
number of the stiffness matrix is addressed. In Section 4.4 finally, a PUM is exhibited in which all
the degrees of freedom have the meaning of the value of the approximating function in appropri-
ate points. Sections 5.1 and 5.2 discuss briefly methods how to choose good local approximation
spaces and the issue of the optimality of local spaces. Two numerical examples are presented. In
Section 7.1, the PUM is compared with the usual p versions for the approximation of harmonic
functions. In Section 7.2 the PUM is used for the approximation of solutions to Helmholtz’s
equation with large wave number. The PUM is shown to be superior (both in terms of error per
degree of freedom and error per floating point operation) to several h version type finite element
methods. The paper concludes in Section 8 with a proof of an a posteriori error estimator for the
PUM which is based on exact solutions of appropriate local problems.

2. THE RELATION OF THE PUM TO OTHER METHODS

2.1. The classical h, p, and h—p methods

In this Section we argue that the PUM can be viewed as a generalization of the classical 4 and
p version and that the performance of the standard methods also hinges on the availability of
good local descriptions of the solution. This close connection between the ability to describe the
local behaviour of the solution and the performance of the method was our main theme in the
discussion of the first feature of the PUM in Section 1.

Let us first recall the main approximation properties of the classical FEM spaces. The trial
spaces of the classical h, p, and h—p methods are spaces of piecewise polynomials which are
continuous across inter-element boundaries. The key point for the approximation properties of
these classical ansatz spaces is that locally (here: on each element) approximation is done by
polynomials and that these local approximations may satisfy the additional constraint to be
conforming (here: they satisfy an inter-element continuity condition) without sacrificing the
approximation properties. In the & version, the polynomial degree p is fixed (typically, p < 2) and
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730 I. BABUSKA AND J. M. MELENK

approximation is achieved by decreasing the mesh size h. An appropriate interpolant (e.g.
for p =1 on triangles, the nodal interpolant can be taken) produces a good approximation
which satisfies the necessary continuity requirements. In the p version, local approximation
is realized by polynomials of increasingly higher degree. The approximation properties
of conforming p extensions are due to two facts. Unconstrained, i.e. without any inter-element
continuity constraints, polynomials have good approximation properties on each patch.
The resulting jumps across inter-element boundaries can be resolved by polynomial correc-
tions because polynomial spaces are—in contrast to, e.g. spaces of harmonic polynomials—
large enough to admit continuous extensions from the element boundaries into the
elements.!3

The PUM can be viewed as a generalization of the classical h and p versions if the local
approximation spaces V; in the PUM are chosen to be polynomial spaces. The approximation
properties of the PUM spaces constructed in this way are very similar to those of the classical
spaces; see Examples 1 and 2 in Section 3 for the details. The mesh design (i.e. determining areas
of mesh refinement) and the choice of the polynomial degree on each element affect greatly
the performance of the h—p FEM. The design of the mesh and the p degree distribution depend
on knowledge about the local behaviour of the solution. For example, in elliptic problems
with piecewise analytic input data, a very good description of the local behaviour of the solution
is available in terms of so-called countably normed spaces.!* This precise knowledge
about the local behaviour of the solution allows us to control the mesh refinement towards
the singularities and the polynomial degree distribution in an optimal way, and we obtain
exponential rates of convergence (cf. Reference 15 for an overview of state of the art h—p
technology).

2.2. Data fitting

We include a brief section on data fitting because data fitting is also concerned with
approximation problems and therefore ideas from data fitting can be and are used in the design
of ansatz spaces. We will merely outline some of the ideas used in data fitting and refer to
References 16 and 17 for more complete surveys on the subject. Typically in data fitting the
fitting algorithm produces a function F which is of the form F (x) =Y, f;®;(x) where the values
f; are the data (e.g. function values, derivatives, etc.). We will call the functions ®; the shape
functions.

One class of fitting algorithms is based on the so-called ‘inverse distance weighted methods’
whose ancestor is Shephard’s'® method. In the basic Shephard method, scattered data (x;, f;) is
interpolated by a function

nm=zﬁmw/zmm
where the weights are typically chosen as decaying functions of the distance of x from the points
x;. The basic shape functions are thus
wi(X)

P =5

Note that these functions form a partition of unity. Furthermore, it is worth noting that the
approximation properties of the interpolant F can be understood by interpreting Y, f;®; as
a suitable approximation of an integral of the form | f(y)®.(y) dy where ®@, is an approximation
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THE PARTITION OF UNITY METHOD 731

of the Delta function concentrated at the point x. One possible generalization'® of the classical
Shephard method is to seek the interpolating function F in the form

F(x)=F(x,aq,...,a,)

where the parameters ay, . . . , a, are determined by minimizing (for each fixed x; therefore, strictly
speaking, the coefficients a,, . . . , a, depend on x)
Z [f; - F(xia agy .« .y ap)]2 Wi(x) (1)

If the function F is a polynomial in x and the parameters are the coefficients of the polynomial,
this method is called moving least-squares method.?° If one carries out this minimization, the
global approximation F takes the form

F(x)= Z &)i(x)fi

and the desired shape functions are the functions ®;. Note that the evaluation of the shape
functions ®; at each point involves the solution of a minimization problem with p + 1 unknowns;
note furthermore that some conditions have to be satisfied by the relative position of the nodal
points x; in order to guarantee a unique minimizer. This method is a generalization of Shephard’s
method because the particular choice of F(x, ag) = ag, 1.e. polynomials of degree 0, reduces the
method to Shephard’s method.

A different generalization of the classical Shephard method uses the fact that the functions
@, form a partition of unity. For example, if the function values and the derivatives are given in
the nodes x;, then one can choose the function

F(x) = ¥ @(x) Li(x) &)

where the L; are the Taylor polynomials about the nodes x;. In fact, any local approximation may
do. This is the starting point of the PUM.

Besides these ‘inverse distance weighted methods’ there are many other ideas used in data
fitting. For example, a popular technique is to use the classical finite element shape functions, viz.,
use piecewise polynomial interpolation. Another set of methods is based on the so-called radial
basis functions (see Reference 17 for an overview), also known as multiquadrics. We would like to
emphasize here that these radial basis function methods are, in their original form, non-local and
therefore do not lead to sparse stiffness matrices (radial basis functions with compact support
have been constructed recently, cf. the survey in Reference 17).

We will see in Section 2.3 that the shape functions used in data fitting can be used in various
variational formulations for the solution of partial differential equations. However, one should
notice that the shape functions used in data fitting are designed to have certain features which
may not be very important in Galerkin methods. For example, many data-fitting shape functions
are smooth (C! or C?, say) because they were designed to produce good results in visualization
applications. In contrast to this, smoothness of the ansatz functions in Galerkin methods is
dictated by the choice of the variational formulation and typically much less regularity is required
than the data-fitting shape functions provide.

Another observation regarding the use of data fitting shape functions in Galerkin methods
is the fact that the goal of data fitting is to interpolate a given data set. However, in Galerkin
methods it is enough that the shape functions have good approximation properties—approxima-
tion rather than interpolation is important. Therefore, the stability issues which play an
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732 I. BABUSKA AND J. M. MELENK

important role in the design of data fitting shape functions should not be as prominent in the
design of shape functions to be used in Galerkin methods.

In accordance with our discussion of the first feature of the PUM of Section 1, we also note that
the data fitting algorithms do not take into account the fact that we are trying to solve a partial
differential equation. As a matter of fact, the ‘inverse distance weighted methods’ described above
rely on local polynomial fitting. As we mentioned above, the approximation properties of the
various data fitting schemes discussed in this section can be understood by interpreting the
interpolant F as coming from a convolution with an approximate Delta function. For historical
completeness’ sake, let us point out that the use of approximate Delta functions, or weighted
averages, to obtain (smooth) approximations of a given function has been a standard tool in
mathematical analysis for a long time. To give just a few examples, let us mention the proof of the
density of smooth functions in Sobolev spaces, the proof of the density of polynomials in C° by
means of Bernstein’s polynomials, and various results on the convergence of Fourier series.

2.3. Meshless methods

The basic idea of meshless methods is to use shape functions which are used in data fitting
as the ansatz functions in a variational formulation. More precisely, given a distribution of nodes
X;, the fitting algorithm is invoked to produce the shape functions ®; which are then in turn used
as the ansatz function of a Galerkin or collocation method. This is the essential idea of the
DEM,?! the EFGM,?2" 24 the hp-clouds,>®> multiquadric methods,>%27 the SPH,?® the
RKPM,?° 31 and the GFDM.3? We refer to Reference 33 for a detailed comparison and a study
of the connections between these various methods.

In the SPH and the RKPM, for example, the following ‘interpolation scheme’ motivates the
choice of the ansatz functions. Starting from a suitable approximation of the Delta function w,,
concentrated at the point x, the integral f(x) ~ j f(y)w.(y) dy is suitably approximated in order to
produce an approximation of the form Y, f(y;)Wi(x). The functions w; are then taken as the shape
functions for a collocation or Galerkin method. Of course, there is great freedom in the choice of
the function w,. In the RKPM this freedom is exploited to impose additional conditions, in
particular that polynomials of a fixed degree are reproduced.

Using equation (1) with F as polynomials in x leads to the so-called moving least-squares
method and the shape functions produced by that fitting algorithm are the ones used by the DEM
and the EFGM in a Galerkin method. The PUM could be viewed as a generalization of the idea
presented in equation (2). Instead of trying to approximate locally with Taylor polynomials,
however, we permit any good local approximation L;. The hp clouds can be viewed as a mixture
of the EFGM and the PUM if the local approximation is realized by polynomials. Actually, in its
simplest form, the hp clouds are a Galerkin method whose shape functions are given by equation
(2) where the L; are polynomials or degree p.

Let us finally highlight the differences between the PUM and the various meshless methods
discussed above. The shape functions of all the above meshless methods are motivated by some
form of local polynomial fitting. Therefore, the approximation properties of the ansatz spaces used
by these methods are essentially given by the local approximation properties of polynomials and
all these methods are very similar to the PUM if the local approximation spaces in the PUM are
chosen to be polynomials. In fact, the computational analysis of Oden and Duarte?® indicates
that in this case the PUM is more efficient than the EFGM. Since the performance (from an
approximation point of view) of these meshless methods rests on the local approximation
properties of polynomials, we may expect these methods to perform poorly whenever poly-
nomials approximate the solution poorly, as is the case in problems with rough coefficients or the
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THE PARTITION OF UNITY METHOD 733

problems with highly oscillatory solutions alluded to in Section 1. Note that these are precisely
the situations where the classical FEM perform poorly as well. In contrast to this, the PUM has
much greater flexibility in the choice of the local approximation and allows us to approximate
locally with functions which are custom tailored to the problem under consideration. Therefore,
we may hope that the PUM can deal successfully with problems with which the classical FEM or
these meshless methods cannot cope.

3. MATHEMATICAL FOUNDATIONS OF THE PUM

In this section, we present our method of constructing conforming subspaces of H'(Q). We
construct ansatz spaces which are subspaces of H!(Q) as an example because of their importance
in applications. We would like to stress that the method leads to the construction of smoother
spaces in a straightforward manner. Crucial to the construction of the PUM spaces is the notion
of a (M, C,, Cg) partition of unity.

Definition 1. Let Q = R" be an open set, {Q;} be an open cover of Q satisfying a pointwise
overlap condition
IMeN VxeQ card{i|xeQ;} <M

Let {¢;} be a Lipschitz partition of unity subordinate to the cover {Q;} satisfying

supp @; < closure(QQ;) Vi (3)

Z pi=1 onQ 4)

[@ill =@y < Co )
V01l < iy ©)

where C,,, C are two constants. Then {¢;} is called a (M, C,,, Cg) partition of unity subordinate
to the cover {Q;}. The partition of unity {¢;} is said to be of degree m € Ny if {¢;} = C"(R"). The
covering sets {Q;} are called patches.

Definition 2. Let {Q;} be an open cover of Q = R" and let {¢;} be a (M, C.,, C;) partition of
unity subordinate to {Q;}. Let V; = H'(Q;nQ) be given. Then the space

V::Z o Vi= {Z Q;v;|v; € Vl} c HY(Q)

is called the PUM space. The PUM space V is said to be of degree m e N if V' < C™ (Q).The spaces
V; are referred to as the local approximation spaces.

Theorem 1. Let Q < R" be given. Let {Q;}, {¢;}, and {V} be as in Definitions 1 and 2. Let
ue H'(Q) be the function to be approximated. Assume that the local approximation spaces V; have
the following approximation properties: On each patch Q;nQ, u can be approximated by a function
v; € V; such that

A\

lu — vl L2QnQ) X &1 (i)

V(u—v) HLZ(QmQ) < &,(i)
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734 I. BABUSKA AND J. M. MELENK

Then the function
uap = Z ®iv; € V < HI(Q)

satisfies

1/2
u— Uyp l e SVMC, <Z 3%(1)>
Ce 2 1/2
V(U — ) || L2y < /2M <Z <diamQ<> () + C2 8%(1')>

i

Proof. Using the fact that ', ¢; = 1 on Q, we can write u — u,, =Y, ¢;(u — v;). The theorem
follows after an application of the second estimate of Lemma 2 (see Section 8) with
u; = @i(u — vy). Ul

Example 1. The PUM as an h version. Let u € H*(Q), k > 1. Let each patch Q; have diameter
h; < h, and let each V; have approximation properties

(i) < Chélﬂ HUHH"<QnQ,-)

o )
& (i) < Chi! [lul| HYQNQ)
for some appropriate u > 0. Then the error estimates of Theorem 1 take the form
lu— Uap [ L2 S MC, Ch**! flul HYQ)
t)

[Vt — thap) | L20) < MC/2(Cg + Coo) M| ut| piery

where we used the first estimate of Lemma 2 (Section 8) in the estimate of the sums Y, &, (i)?,
Y, €2(i)%. Note that estimate (8) holds for any system of local approximation spaces V; satisfying
(7). For example, if the spaces V; consist of polynomials of degree p, then (7) holds with
u = min(k — 1, p). If the spaces V/; consist of harmonic polynomials of degree p, (7) holds also with
w=min(k — 1, p) if we know a priori that the function u is harmonic. In this example, local
approximability of the spaces V; (and thus global approximability by Theorem 1) is achieved by
the smallness of the patches Q;NQ.

Example 2. The PUM as a p version. Let u e H* (Q), k > 1, and let {Q;}}_, be N fixed patches
covering Q. Denote diam(€;) by h;. Assume that the spaces V; (depending on a parameter p) have
the approximation properties

e1(0) < Chip™" |l u| m0noy
)

e()) < Cp~"lu HH“(Qin)

for some appropriate u > 0. Then the error estimates of Theorem 1 take the form
lu— Uap I L2 < Mcoocm_ax hip™lu ”H"(Q)a
1

V(U — typ) [l 120y < MC\/2(CE + C2) p~ " u oy

Note that this estimate holds for any system V/; satisfying (9)—they do not have to polynomials of
degree p. If the spaces V; consist of polynomials of degree p then (9) holds with u = k — 1 (under
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THE PARTITION OF UNITY METHOD 735

some appropriate conditions on the shape of the patches). Estimate (9) also holds for spaces
V; consisting of harmonic polynomials of degree p if the function u is known to be harmonic (see
Theorems 2 and 3). In this example, the approximation properties of the global PUM space are
achieved through increased approximability of the local spaces while keeping the patches fixed. If
we allow the size of the patches to vary as well, then this method behaves like an hp version.

We would like to stress at this point that the requirements on the partition of unity are very
weak: it only needs to be Lipschitzian in order to produce H' subspaces. Also, we do not need
positivity of the partition of unity—the elements of the partition of unity are allowed to change
sign. Moreover, if the partition of unity is of degree m (and the local approximation spaces are
sufficiently smooth), then the finite element space V' as constructed in Definition 2 is also of
degree m.

Theorem 1 is formulated in terms of H', appropriate for a large class of second-order
problems. Mutatis mutandis, however, the estimates can be formulated in terms of H*, k > 1
to produce ansatz spaces for higher-order equations. Similar estimates can be achieved in
Sobolev spaces W* 2.

Remark 1. This idea of using a partition of unity to construct finite element spaces tailored to
the differential equation has been used by Babuska et al.® and Melenk3#3. As mentioned in
Section 2.3, for a judicious choice of parameters, the EFGM reduces to a special type of PUM,
and the convergence analysis of Oden and Duarte?’ for this special case is based on Theorem 1.

4. THE PUM IN ONE DIMENSION

4.1. A one dimensional example

Let us demonstrate for a one-dimensional model problem how ansatz spaces with good
approximation properties are constructed with the PUM. To this end, consider

—u' + k*u=feC?*[0,1] on(0,1)
u(0)=0 (10)
u(l)=geR
We assume that the parameter k > 1 is large. Associated with this problem is an ‘energy’ norm,
given by

lvle= {220 + k0]l f2} "/
Let us note that for large k, the solution to problem (10) typically exhibits a boundary layer in the
neighbourhood of x =0 (and a weaker boundary layer at x = 1), and thus the usual FEM
performs poorly unless h is sufficiently small (relative to k1) or a very strongly refined mesh is
used. The PUM allows us to use local spaces reflecting this behaviour, and therefore leads us to
a robust FEM, i.e. a method which is good uniformly in k.

Let ne N, h = 1/n and define x; = jh, j =0, ..., n. Define also x_; = — h, x,.; =1+ h and
set the patches Q; = (x;—1, x;11),j =0, ..., n. On each patch Q;, we have to define a local space
which can approximate the solution u of problem (10) well. We consider

V' =span{l,sinhkx, coshkx} on Q;nQ, j=1,...,n
Vo = span{sinhkx, 1 — coshkx} on QyNQ
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736 I. BABUSKA AND J. M. MELENK

We note that the space V, is constructed such that it satisfies the essential boundary condition at
x = 0. The approximation properties of these spaces, which are tailored to this particular
problem (10), are given by the following lemma.

Lemma 1. Let u be the solution to problem (10) and let Q;, V| be as defined above. Then there are
vj€ V] such that

’ b - ’ hz 4
[ (u—v)) HLZ(Q,mQ) < Ch'’? [hz min(1, (kh) 2)Hf L@ + * I/ |L’“(Q):|

. - ! h2 . - ”
[ — vj)llL2@,n0) < Ch'? [h3 min(1, (kh) ™) || f" |-y + Imln(h, k=Y f |L‘(Q):|
where C > 0 is independent of h, k, and f.

Proof. Because the spaces V/ contain the fundamental system {sinh kx, cosh kx}, it is enough to
approximate a particular solution to

—u' +ku=f onQ;nQ

By Taylor’s theorem, on Q;nQ, f(x) = I(x) + r(x) where [(x) is linear and |r(x)| < (2h)? | /" || L@
(note that diam Q; < 2h). A particular solution to the problem with the right-hand side r(x) is
given by the solution u, to

—ul + k*u,=r onQ;nQ

u=0 ondQ;nQ)

Thus,
2h

(K78 HIZ‘Z(QJI\Q) + k|| u, szﬂ(njmm < 2 7 lef(g,.ng)

from whence
2

I “;”LZ(Q/AQ) < Chl/z% 1f" L@
h2

[ty | L2(0,n0) < Chluz min(h, k™) [ /" @
with C > 0 independent of h, k, and f. Finally, a particular solution to the problem with the
right-hand side [(x) is given by u/(x) = k™ 2I(x) which can be approximated in ¥} such that

[ u — UjHLZ(anQ) + [ (u — vy) HLZ(anQ) < CR*h'2 min(1, (kh) =) | f'|| L*(Q)>
where C > 0 is independent of h, k, and f. The assertion of the lemma follows. O
Remark 2. The spaces V] were chosen as local approximation spaces because they contain the

fundamental system {sinh kx, cosh kx} and the particular solution that corresponds to a constant
right-hand side. It is easy to check that the functions {1, x, ..., x"} actually span a space of

particular solutions for polynomial right-hand sides of degree p. Hence, Lemma 1 can be adapted
to produce the following approximation result. The spaces

V! = span{sinhkx, coshkx, 1,x,..., x?} onQ;nQ, j=1,...,n

Vi = span {sinhkx, I — coshkx, x,...,x"} onQynQ
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THE PARTITION OF UNITY METHOD 737

contain vj € Vj such that

pt2

h
L@ Tt X |f(p+2)|L”(Q):|

1 = v) | L2@ne) < Cph''? [h””min(l, (kh)2> | fe* D)

. _ Wt
[(u — vy ”Lz(Q,-nQ) < Cphl/2 |:hp+3mm(1> (kh) 2) ”f(p+ b =@ + % min (h, %) Hf(erz) | L"(Q):|

for some C, independent of h, k, p, and f.
For any partition of unity {¢;} subordinate to the covering {Q;}, the finite element space V' as
constructed in Definition 2 is given by

V! = span{g;(x), ¢;(x)sinh kx, ¢;(x)cosh kx,
@o(x)sinh kx, @o(x)(1 — coshkx)|j=1,...,n}.

Since the assumptions on the partition of unity stipulate that the functions ¢; be Lipschitz
continuous, we see that V'C H'(Q). Because each function ¢; is assumed to vanish outside the
patch Q;, and because the elements of V'L vanish at x = 0, we see that all elements of V! vanish at
x = 0. Hence, a conforming finite element method can be based on V', and the finite element
solution is the best approximant in the energy norm

lu — upg e < ‘inf‘ [u— vl
Therefore, with the aid of Theorem 1, the local approximation properties of the spaces V] in
Lemma 1 lead to

Proposition 1. Let the patches {Q;} and the local approximation spaces {V}} be given as above.
Let {¢;} be a (M, C.,, Cg) partition of unity subordinate to the patches {Q;}. Then the finite element
solution upg of the PUM satisfies

lu — upglle < Ch? {min(l, (kh)_l) If HL“(Q) + k! | £ HL"‘(Q)} (11)

where C > 0 is independent of h, k, and f.

This shows that the PUM enables us to construct robust finite element methods which are
efficient uniformly in k, i.e. the finite element method behaves as well for the rough case of large
k as it does for the smooth case k = 1. The PUM gives these good uniform estimates because the
local spaces V| capture the local behaviour of the exact solution very well. Note that the number
of degrees of freedom is comparable to the number of degrees of freedom of the usual, piecewise
quadratic finite element method which is— with the exception of (piecewise) quadratic solutions
—of order h* and not better. Thus, the PUM is as good as the usual piecewise quadratic finite
element method for the smooth case k = 1.

A simple adaptation of this idea is to choose the local spaces selectively. For example, since the
right-hand side f'is smooth, we expect a boundary layer close to x = 0, x = 1, but expect smooth
behaviour away from the boundary. Hence, it suffices to use the spaces V] on patches close to the
points x = 0, x = 1, and we can use polynomials spaces V; = span{l, x, . . . , x} on patches away
from the boundary. The idea of choosing the local approximation spaces selectively can also be
employed in adaptive versions of the PUM. Keeping the patches and changing the degree p of the
polynomials lets the PUM act like an adaptive p version; changing the size of the patches
adaptively makes the PUM behave like an adaptive h version.
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738 I. BABUSKA AND J. M. MELENK

Remark 3. The idea of using non-polynomial ansatz functions in order to capture the behav-
iour of the exact solution has been used for a long time. For example, L—splines contain the
fundamental system of the equation under consideration. We elaborated this one-dimensional
example of the PUM because it exhibits the main features of the PUM and most of the
observations of the one-dimensional case carry over to the two- or three-dimensional setting.

4.2. Examples of partitions of unity

In this section we propose several (M, C, C;) partitions of unity for the one-dimensional
example of the preceding section. Thus, the underlying cover of the domain (0, 1) is the one given
in the previous section.

The usual piecewise linear hat functions form a partition of unity. Let
1 +% for xe(— h,0]
o' (x) = 1—% for x e (0, h) (12)

0 elsewhere

and define the partition of unity by ¢}(x) = @(x — x)),j=0,...,n
2. Functions which are identically 1 on a subset of their support can also form a partition of

unity:
%+27 forxe<—ih,—Z]
1 for x e < — Z, ?J
P’ =, - (13
5—2— for xe<‘—‘,‘—‘h>
0 elsewhere

and define the partition of unity by ¢7(x) = ¢(x —x),j=0,...,n.
3. A combination of the above two examples is to choose the functions ¢] for patches in the
interior but to modify the functions on patches close to the boundary. Define

(

1+% for xe(—h,0]

1 for x € (0, h]
9} () = { . (14)
2 — 7 for x € (h, 2h)
\ 0 elsewhere

We observe that the patches QouQ;, Q,_,UQ,and Q; j=2,...,n— 2, cover Q. On the
patches Q;, j=2,...,n— 2, we define <pf(x) = (p}(x) . On the patch Q,uQ; we choose
@i(x) = ¢>(x) and on the patch Q,_, UQ, we choose ¢>_,(x) = ¢3(x — x,_,). Note that
Pi =0+ @i and ¢}y = ¢u-1 + ¢n.
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THE PARTITION OF UNITY METHOD 739

4. In all three examples above, the partition of unity is merely Lipschitz continuous. However,
partitions of unity of any desired regularity can be constructed. Here is a piecewise
polynomial C! example. The resulting global finite element space V" is then a subspace of
C' [0,1]. Define

(x + h)2(h —2x) for xe(—h,0]
0*(x) :% (h — x)*(h + 2x) for x (0, h) (15)

0 elsewhere

and define the individual members of the partition of unity by ¢7(x) = ¢*(x — x;) on the
patches Q;.

5. In this example, let Q; be any cover of Q satisfying an overlap condition (i.e. not more than
M patches overlap in any given point x € Q). Let y; be Lipschitz continuous functions
supported by the patches Q;. If [y/j| < Cand Y ,y; > C diam Q; on each Q;NQ, for some C,
C > 0 independent of j, then the functions

Wi(x)
Yii(x)

form a (M, CC™*,CC~*(1 + MC*C™?)) partition of unity subordinate to the cover {Q;}.
Note that the functions ¥; scale with their supports in the sense that || < Cdiam ;. The
functions ¢; inherit the smoothness of the functions i, i.e. with this ‘normalizing’ technique,
one can easily construct partitions of unity of any desired regularity. Another feature of the
construction is that it allows us to build (M, C,, C¢;) partitions of unity for very general
covering situations. In particular, it enables us to produce the necessary partitions of unity
whenever patches are added, removed or otherwise changed in an adaptive computational
environment.

@j(x) =

4.3. Polynomial local approximation spaces and linear dependencies

In this section we want to analyse in more detail the PUM spaces based on polynomial local
approximation spaces. We will see below that for polynomial local approximation spaces, the
choice of the partition of unity has an influence on the approximation properties of the PUM
space and has implementational ramifications in the following sense. In any implementation,
a basis of the PUM space has to be constructed, and it would be convenient if that basis were
determined directly by the basis functions of the local approximation spaces. In general, however,
this is not true. For example, for piecewise linear partitions of unity and polynomial local
approximation spaces, the local basis functions (multiplied by the appropriate partition of unity
functions) are linearly dependent and thus do not form a basis of the PUM space (see below).
Although this example is artificial, it suggests that even if the local basis functions lead to a basis
of the PUM space, the resulting functions might be ‘nearly’ linearly dependent, and the resulting
finite element stiffness matrix will be badly conditioned.

Define

Vo =span{x,....,x"} onQynQ

Vi =span{l,x,...,x"} =span{l,x —x;...,(x —x)’} onQ;nQ
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740 I. BABUSKA AND J. M. MELENK

forj=1,...,nandset Vi = {0} if p = 0. For any partition of unity {¢;}, the PUM space is given
by
VH:Span{(pj(X)Xm,(Po(X)Xq|j:1,...,}’1, mzoa"'ap) q:L,p}

The fact that the functions {¢;} form a partition of unity, i.e. }; ¢;(x) = 1 on Q, implies that the
space V" satisfies a consistency condition in the sense that all polynomials of degree < p which
vanish in x = 0 are contained in V™.

Let us now consider the spaces V" based on the various partitions of unity of the previous
section more closely. Denote by V™1 V™2 and V™3 the spaces V" constructed using the
partitions of unity {¢]}, {¢7}, and {¢;} respectively. Let us concentrate on V™! first. Owing to
the fact that the functions ¢} are piecewise polynomials, the space V™! is precisely the space of
piecewise polynomials of degree p + 1 constrained to vanish in x = 0. This is an example where
the global finite element space has even better approximation properties than guaranteed by
Theorem 1: Locally, approximation is done by polynomials of degree p and Theorem 1 states that
the local approximation properties are inherited by the global space, i.e. the H* approximability is
O(h?). However, the space of piecewise polynomials of degree p + 1 has better approximation
properties: it is O(h? ') for H' estimates. Let us note that dimV™! = n(p + 1).

As mentioned above, it would be convenient for implementational purposes to take as a basis
of the finite element space V™! functions which are determined by the basis functions of the local
spaces V', i.e. we would like to take the functions

(p}(x)(x-xj)’”, j=1,...,n, m=0,...,p (16)
eo(x)", m=1,...,p (17)

However, these functions are not linearly independent for p > 1 as a simple counting argument
reveals: there are n(p + 1) + p functions but dimV™! =n(p +1) <n(p + 1) +p for p > 1. Of
course, one can still use these functions. For problem (10) they will lead to a positive semi-definite
matrix (as opposed to a positive definite matrix, which is obtained if a basis is used), which has
many algebraic solutions. However, all these algebraic solutions are merely different representa-
tions of the same function on Q. One way to solve this linear system is to use a penalty method to
deal with the linear dependencies (see Reference 34 for a computational analysis).

One can avoid these linear dependencies if one uses a different partition of unity. For example,
whenever the partition of unity is such that each member ¢; is identically 1 on an open set
0; = Q;nQ (and all the other ones vanish there), linear dependencies as above cannot occur.
Hence, the functions

@7 (x) (x-x)", j=1,...,n, m=0,...,p (18)
P5(x)x", m=1,...,p (19)

form indeed a basis of the space V™2

A more careful analysis of the linear dependencies occurring for the case of V™! reveals that
the local approximation space at either the left or the right endpoint of Q contains too many
functions. Thus, a modification of the partition of unity at one (or both) endpoints allows us to
exclude linear dependencies: The functions ¢3(x) (x — x)"j=2,...,n—1,m=0,...,p, 3(x)
x",m=1,...,p, form a basis of V™3, Let us point out that the space V™3 does no longer
contain all piecewise polynomials of degree p + 1. Let us note here that this space is very closely
related to V™. In fact, for problem (10), the stiffness matrix of the finite element method based
on V™3 can be easily extracted from the positive semi-definite stiffness matrix constructed
using V™1,
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THE PARTITION OF UNITY METHOD 741

The example V™! shows that ‘unfortunate’ combinations of local approximation spaces and
partitions of unity exist, where the basis elements of the local spaces multiplied by the appropriate
partition of unity function are linearly dependent. This indicates that even if the chosen functions
derived from the local bases are linearly independent and form a basis of the finite element space,
the resulting stiffness matrix may still be badly conditioned.

4.4. Polynomial local approximation spaces: Lagrange-type elements

If we choose the functions ¢; (x) (x — x;)™ as basis functions of the space V", the degrees of
freedom cannot be identified directly as function values in certain points. Rather, the degrees of
freedom are related to higher derivatives of the elements of V" in the points x;. In this sense, the
functions ¢(x) (x — x;)™ produce a Hermite type space. However, it is also possible to construct
Lagrange type spaces, where the degrees of freedom represent the function values in particular
‘Lagrange interpolation points’. Let us illustrate this for the case where we want to approximate
locally with polynomials of degree p. Let {Q;} be a cover of Q=(0,1) and let {¢;} be
a (M, C,, Cg) partition of unity subordinate to the cover. Let y, i = 1,..., N, be the ‘Lagrange
interpolation points’, and assume that there are p 4+ 1 points y; in each patch Q;. In order to be
able to enforce the essential boundary condition at x = 0, we will stipulate y; = 0. On each patch
Q; let L; , be the usual polynomial Lagrange interpolation function of degree p which is 1 in the
point y; and vanishes in all the other p ‘Lagrange interpolation points’ which are in the patch Q;.
As before, we define the global finite element space by

pu_ { IZV: Z goj(x) Lj,yi(x) aj,y.~|aj-yi € R}

i=1 j

This is exactly the same space as is obtained if the local spaces V; are chosen to be
span{l, x, . . . x"}. Now, if we identify unknowns associated with the same interpolation point,
ie., if we set a,, ,, = a, ,, for all n, m for each point y;, and denote these common values by a,,, we
arrive at the space

N

VIV = { Z |: Z QDJ(X) Ljy)’i(x):| a}’i|a)’i € R}
i=1L jyeQ;

Because the functions ¢; form a partition of unity and because the functions L; , take only the

values 0 and 1 in the ‘Lagrange interpolation points’ y,,, the values a,, are precisely the function

values of the elements of VY. Hence, we can take as a basis of V!V the functions

Q;(x) = Y ¢i(x)L;,(x), i=1...,N
J:yieQ;
The essential boundary condition at x = 0 is also easily enforced by simply setting a,, = 0, which
gives the space
N
VY = { Y a,®i(x)]a, € R}
i=2
Let us make a few remarks on the approximation properties of the space V. The approximation
properties of the spaces V" are given by the approximation properties of the local spaces V], i.e.

by the approximation properties of polynomials of degree p. For fixed degree p and appropriate
conditions on the distributions of the interpolation points on each patch, it can be shown that
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742 I. BABUSKA AND J. M. MELENK

approximation with ¥V is—up to a constant— as good as with V™. Finally, let us mention that
these spaces V', V'V are closely related to the EFGM.2?

Above we noted that the close relation between the spaces V™! and V™3 enables us to
construct the stiffness matrix based on V™2 easily from the one based on V™!, Similarly, the
stiffness matrix based on the functions ®; can be extracted from the stiffness matrix based on the

functions ¢;L; ..

5. COMMENTS ON CHOOSING LOCAL APPROXIMATION SPACES

5.1. Change of variables techniques

In Section 4.1, we chose the local approximation spaces for problem (10) to consist of
a fundamental system for the differential equation and particular solutions for polynomial
right-hand sides. A different method to construct local approximation spaces is based on changes
of variables. If the change of variables x — X maps the problem onto a problem which can be
approximated well (in some appropriate norm) by polynomials (in X), say, then the ‘mapped
polynomials’, i.e. P(X(x)), where P is a polynomial, also have good approximation properties. For
example, Babuska et al.® considered the problem

— Ox(alx, y) Oxu) — 0, (a(x, y) oyu) = f on Q
u=0 on dQ
where the coefficient a(x, y) is assumed to satisfy
O<a<alx,y)<f<

and is unidirectionally rough, i.e. the coefficient a(x, y) is smooth in the y direction whereas it is
rough in the x direction. The roughness of the coefficient a(x, y) results in poor regularity
properties of the solution u, and thus the usual finite element method leads to mesh sizes h which
are prohibitively expensive. For the simplified model, a(x, y) = a(x) , the change of variables

L[ de
T Joal

y=y
transforms the problem into one for which a better regularity theorem holds: if f € L*(Q), then the
transformed function 7 is in H*Q) (Q denotes the image of Q under the above transformation; cf.

Reference 8 for a proof). Thus, @i can be approximated by linear functions in X, . Formulating in
the original co-ordinates gives that u can be approximated on the patch Q; by

V;ES an{l jxg }
j €SP s oa(t)’y

lu = vjlli @) < C(diam Q) || it || g

such that

(Qj is the image of the patch Q; under the transformation). The constant C > 0 depends only on a,
p and is independent of the roughness of the coefficient a(x), and thus these local spaces have
good approximation properties on patches independent of the bad behaviour the coefficient a(x)
might display.
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THE PARTITION OF UNITY METHOD 743

Let us finally point out that in this example the change of variables can be done locally: if
(xj, v;) € Q;, then the approximating functions can be chosen to be in span{l, jii 1/a(t), y}.

Another instance where the idea of using a change of variables is successfully used can be found
in References 6 and 7. For elliptic problems in two dimensions with corners or interfaces, the use
of a conformal map is proposed which maps the rough solution to a smoother function. This
smoother function on the mapped domain can be approximated by polynomials. Hence, the
images of polynomials under the inverse of this conformal map are used for the approximation of
the original problem.

5.2. Optimality of local approximation spaces and n-width

An interesting issue in the context of finding good local approximation spaces is the question of
optimality of local spaces. We measure optimality in terms of n-width,*? i.e. in terms of error per
degree of freedom for a whole class of functions:

d(n, [|-[l, §) = infsup inf || f— g
E, feS g€eE,

where E, denotes an n-dimensional space, and S is the class of functions that we wish to
approximate; typically, S is chosen as the unit ball of some appropriate Banach space. A minimiz-
ing space E, is called an optimal space. We see that this notion of optimality depends on the
dimension n, the norm |-||, in which we measure the approximation error, and the choice of the
class S. In particular, different classes S lead to different optimal spaces. In practice, of course, we
want robust optimal (or near-optimal) approximation spaces because we might not know with
respect to which class of functions we should optimize (this uncertainty issue is elaborated in
Reference 36). For example, if we choose | - || = || | g1 ) and if we are interested in approximat-
ing functions which are analytic on Q > > Q, the class S could be taken as the unit ball of any
H*Q), k > 1. Thus, due to this uncertainty, we want the approximation spaces to be optimal for
as large a class of functions as possible.

Proposition 2 below exhibits an example of approximation spaces which are optimal for large
classes of harmonic functions. In the framework of the PUM, Proposition 2 yields the following
result: For the approximation of harmonic functions on patches Q; which are discs = R? the
choice of spaces of harmonic polynomials as local approximation spaces V; is an optimal one.
The notion of optimality here is tied to the assumptions of Proposition 2, namely, the restriction
to functions defined on discs and to rotationally invariant classes of harmonic functions.

For ease of exposition, we deal with complex-valued, holomorphic (analytic) functions and
observe that the case of harmonic functions follows by taking real parts.

We introduce the spaces

#* = { fe H*(Bg(0))| f is holomorphic onBg(0)}, k>0

and a Hilbert space # of holomorphic functions with inner product (-, >, and norm || - ||, is
called rotationally invariant if

If@2)lle =1 f@Ir VfeA,acC,la|=1

The space #° (#") is a Hilbert space with the L? (H') inner product and thus a closed subspaces
of L*(Bg(0)) (H'(Bg(0))). Therefore, the space L*(Bg(0)) (H*(Bg(0))) can be written as the direct
sum of #° (#?") and its orthogonal complement. This reduces the search for optimal spaces for
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744 I. BABUSKA AND J. M. MELENK

the approximation of holomorphic functions in the L? (H') norm to the problem of finding
optimal subspaces of #° (#").

The polynomials (z"); , form an orthogonal basis of #*, k > 0, and it is easy to see that they
actually form an orthogonal basis for any rotationally invariant Hilbert space of holomorphic
functions. Therefore, setting yy(n) = < z", z" > ,, gives the representation

113 = X 1P vt

where the f, are the Taylor coefficients of the holomorphic function f; i.e.

o) = if on By(0)

For example, we have

1

T R2n+2
n+1

W po(n) =

W (n) = TR*" <nR—+1 + n>

Proposition 2. Let # , # , be two rotationally invariant Hilbert spaces of holomorphic functions
on Bg(0). Assume that the quotient

Yo, (n)
V(1)

is monotonically decreasing in n. Then the spaces

T,=span{z"|n=0,...,p}

are optimal spaces for the approximation of functions in J# , in the |- |, norm, i.e. the space
T, minimizes the expression

sup inf 1/ = 9lr

feAs g€k, Hf“//’2

(20)

over all p-dimensional subspaces E, of H ;.

Proof. The proof proceeds in two steps. First, we will see that (20) is bigger than or equal to

<l#//l(P + 1)>1/2
Vou,(p + 1)

for any p-dimensional subspace of 5 ;. In the second step, we see that this infimum is attained for
the choice of T, as p-dimensional approximation space. Let a p-dimensional subspace E, of
A 1 be given. Choose f'e T, orthogonal (with respect to {-,-> ) to E,. Then, the square of (20)
can be bounded from below by

2 2
, 2 , +1
”f“#z feTpu Hf“ﬂz lpﬂz(p 1)
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THE PARTITION OF UNITY METHOD 745

where we made use of the monotonicity assumption. On the other hand, the choice E, =T,
implies

1 =91, _ oo Snps sl 1) Y+ 1)
SR Tamo PV S W p+ D)

where we made again use of the monotonicity assumption. O

sup inf
feAH, geT, Hf“27{z

Choosing #; in Proposition 2 to be #° or #' shows that the spaces T, are optimal if we
measure approximability in the L? or H' norm and if we approximate rotationally invariant
classes of functions which satisfy a certain monotonicity of the numbers ¥, (n). All spaces
A* fall into this latter category and many spaces of holomorphic functions which are in some
weighted H* spaces where the weight is rotationally symmetric. Let us further note that in the
context of the PUM, Theorem 1 suggests that we optimize with respect to the norm
(diam*(Q) |* 1y + || * l£2@)) "> The proof of Proposition 2 shows that this choice of norm
also leads to the spaces T, as optimal approximation spaces.

Remark 4: As stated earlier, Proposition 2 can be formulated for harmonic functions as well.
Then, the (2p + 1)-dimensional spaces of harmonic polynomials are optimal under similar
conditions. For example, the (2p + 1)-dimensional spaces of harmonic polynomials are optimal
for the approximation of harmonic function on the discs Bg(0) which are in the spaces H*(Bg(0)),
k=1

Remark 5: Proposition 2 and the preceding remark state (loosely speaking) that harmonic
polynomials are universally optimal for the approximation of harmonic functions on discs. This is
partly a justification for the approximation with harmonic polynomials in Section 7.1: As long as
the patches differ not too much from discs, we expect spaces of harmonic polynomials to be nearly
optimal for the approximation of harmonic functions.

Let us stress here that harmonic polynomials are no longer optimal if one of the assumptions of
Proposition 2 is changed. For example, consider approximation on a sector W with angle w and
size R (for notational convenience, we identify R? with the complex plane C):

W ={zeC||z| <Rand 0 < argz < w}.

Assume that we are interested in approximating (in H', say) harmonic functions satisfy-
ing homogeneous Dirichlet conditions on the two straight sides of the sector, i.e. functions of
the form

0
u= Y a,Imz""°

n=1

Tn/o

with coefficients a, € R. Then the functions Im z
sion p for the whole scale of spaces

,n=1,...,pform optimal spaces of dimen-

HE = {u =Y a,Imz"?|a,eR and ) |a,*(1 +n)* 'R < w0 }, k> 1.
n=1 n=1

The proof of this statement is very similar to the proof of Proposition 2. A different way of

defining the spaces " is to say that harmonic functions in H*(Bg~-(0)) which are antisymmetric

with respect to the real axis are mapped onto the elements of /#* under the conformal change of

o/n

variables z — z'",
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746 I. BABUSKA AND J. M. MELENK

6. THE PUM IN TWO DIMENSIONS

In the two-dimensional case—just as in the one-dimensional one—we have to address the
creation of a partition of unity and the choice of local approximation spaces. Let us first
outline two different types of partitions of unity. If a domain Q@ 2 Q is given by a mesh
(i.e., triangles, quadrilaterals, or mapped triangles or quadrilaterals), then the usual
pyramid functions associated with the nodes of the mesh form a piecewise smooth partition
of unity. Since in all the numerical examples below, we use this kind of partition of unity,
let us exemplify this idea with one example. Let Q be the unit square (0, 1) x (0, 1) and let it be

subdivided into n?, n e N, squares of side length h = 1/n with nodes (x;, y;),j=1,...,(n + 1)%
Define
(1 —=x)(1 —y) for (x,y)e[0,1]x[0,1]
(14+x)(1 —y) for (x,y)e[ —1,0]x[0,1]
e(x)=( (1 +x)(1+y) for (x,y)e[ —1,0]x[ —1,0] (21)
(I —x)1+y) for (x,y)e[0,1]x[ —1,0]
0 elsewhere

Then the functions @j(x) = @((x — x;)/h, (y — y;)/h) associated with the (n+ 1)*> patches
Q; = {(x,y)|Ix — x| <h,|y — y;| < h} form a partition of unity. This is the analogous construc-
tion to the first construction of Section 4.2.

The second type of partition of unity is given by the construction described in the fifth method
of Section 4.2. For example, if Q is covered by circles, ellipses, or quadrilaterals, it is easy to
construct a partition of unity of any desired regularity by the ‘normalizing’ technique outlined in
the fifth method of Section 4.2. Let us stress at this point that the partition of unity does not have
to be related to the geometry of the domain of interest.

Many of the observations of Section 4.3 about the one-dimensional case are true in the
two-dimensional setting as well. For example, it can be shown that the piecewise bilinear
partition of unity described above in conjunction with polynomial local approximation spaces
V; displays the same difficulties with linear dependencies as the space V1 of Section 4.3 (cf.
Reference 34). However, the same idea of modifying the partition of unity on patches close to the
boundary as is proposed in the third method of Section 4.2 leads to a basis of the finite element
space which is directly related to the bases of the local spaces. As observed in the one dimensional
case, the stiffness matrix resulting from the modified partition of unity can actually be constructed
from the original one.

Related to the choice of the partition of unity (and the local approximation spaces) is the
question of integrating the shape functions against each other, because the partition of unity is
typically only piecewise smooth (and hence the shape functions). This issue will be explored in
more details in a forthcoming paper. For all the numerical examples below, we use the partition of
unity for the unit square described above, and therefore the usual integration schemes on each of
the n* square can be applied.

Another important question is the implementation of essential boundary conditions. For some
problems, it is easy to construct local approximation spaces V'; on patches close to the boundary
which have both good approximation properties and satisfy the essential boundary conditions.
This is the case in the one-dimensional problem (10) with the choice V§. For an example in two
dimension, consider the implementation of homogeneous Dirichlet conditions on a straight part
of the boundary for the problem — Au = 0. Here, harmonic polynomials which are antisymmetric
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THE PARTITION OF UNITY METHOD 747

with respect to that straight line have good approximation properties and satisfy the homogene-
ous boundary conditions. A similar approach works in a corner.

One way to imitate the way essential boundary conditions are implemented in the classical
finite element methods is to use spaces of (piecewise) full polynomials on patches close to the
boundary. In that case, all the techniques of the usual finite element methods can be applied.
Another approach to the implementation of essential boundary conditions is the use of Lagrange
multipliers or a penalty method. In the numerical examples below, we chose the boundary
conditions to be natural in order to be able to concentrate on the approximation properties of the
spaces constructed with the PUM.

7. NUMERICAL EXAMPLES

In this section, we will present two numerical examples, namely, the approximation of solutions
to Laplace’s equation and Helmholtz’s equation on the unit square with the PUM.

7.1. Laplace’s equation

Let us consider first approximations to the solution of

—Au=0 onQ=(0,1)x(0,1)

1 1
Onu = 0, Re <a2 — + 2 22> on 0Q, a =105

and we fix u in (0, 0) in order to make the solution of this problem unique. Since we want to
present a p version of the PUM where the local approximation spaces are chosen as spaces of
harmonic polynomials of degree p, we need to clarify the approximation properties of harmonic
polynomials. This is done in the following two theorems. Note that there are only 2p + 1
harmonic polynomials of degree p.

Theorem 2 (Szegd). Let Q = R* be a simply connected, bounded Lipschitz domain. Let
Q > 5 Q and assume that u € L*(Q) is harmonic on Q. Then there is a sequence (u,)y- o of harmonic
polynomials of degree p such that

lu —upllLe < Ce™ " ull 2
IV —up)ll-) < Ce™ P lu 2@
where 7, C > 0 depend only on Q, Q.
Proof: See References 45 and 37. O
Theorem 3. Let Q be a simply connected bounded Lipschitz domain, star-shaped with respect
to a ball. Let the exterior angle of Q be bounded from below by in, 0 < A < 2. Assume that

ue HYQ), k > 1, is harmonic. Then there is a sequence (u,);-, of harmonic polynomials of degree
p such that

In p\ A= .
u— upHHf(Q) <C <7> HuHHk(g), i=0,...,[k]

where C > 0 depends only on Q and k.
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Figure 1. PUM, classical p version for Laplace’s equation; a = 1-05, 8 x 8 elements

See Reference 5 for a proof of Theorem 3. Note that typically 2 < 1 and that for domains with
re-entrant corners, A can be significantly less than 1.

Remark 6: The restriction in Theorem 3 that Q be star-shaped with respect to a ball is not a big
constraint for our purposes because we are interested in local estimates on patches and the
patches are typically chosen to be star-shaped.

For the PUM the domain Q is covered by square patches and the partition of unity is chosen to
be piecewise bilinear as described in Section 6. The specific choice n = 8 is made, and the local
approximation spaces V; consist of harmonic polynomials of degree p (p ranging from 0 to 8). In
Figure 1 we plot the relative error in energy norm (i.e. the relative error in the H' semi-norm)
versus the number of unknowns for three methods. The PUM is compared with two classical
p versions, namely, the tensor product spaces Q, and the serendipity spaces Q/, based on an 8 x 8
mesh. We see clearly that the use of harmonic polynomials made possible by the PUM is
advantageous: in order to achieve 1 per cent error in H', the PUM based on harmonic
polynomials needs only half as many DOF as the usual p, version spaces Q,, Q,. This is in
accordance with our earlier observation that the number of harmonic polynomials grows linearly
with the degree p, whereas the size of full polynomial spaces grows quadratically. Note that the
disparity between the PUM and the spaces of full polynomials becomes bigger for higher
accuracy. See Reference 34 for a more detailed study of the performance of the PUM as the
parameters n and a are varied.

Remark 7. For the elasticity equations in two dimensions, the situation is completely
analogous to Laplace’s equation. In the absence of body forces, the displacement field (u, v)
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THE PARTITION OF UNITY METHOD 749

under the plane strain assumption can be expressed by two holomorphic functions ¢,  (see
Reference 38):

2u(u + iv) = kp(z) — 2¢'(2) — P (2) (22)

where ¥ = (2 + 3w)/(2 + 1) and 4, u are the Lamé constants. Choosing x = (4* + 3u)/(A* + )
with A* = 2u/(2 + 2u) gives the representation for the case of plane stress. The holomorphic
functions ¢,  can be approximated by complex polynomials ¢,, ¥, of degree p, and thus the
functions

KQDI,(Z) - Z(ﬁp(z) - lpp(z)
take the role of ‘harmonic’ polynomials for the elasticity equations. It can be shown that

Theorems 2 and 3 hold verbatim for the approximation of the solutions to the elasticity equations
with these ‘generalized harmonic polynomials’.’

7.2. Helmholtz’s equation

The next numerical example deals with the approximations to Helmholtz’s equation. On the
unit square, we consider

—Au—Ku=0 onQ=(0,1)x(0,1)

(23)
O0,u +iku=g¢g on 0Q

where ¢ is chosen such that the exact solution is a plane wave of the form

T

u(x, y) = exp{ik(xcos0 + ysin0)}, 0= 6

The following two types of local approximation spaces were analysed in Reference 5. The first
type are ‘generalized harmonic polynomials’ as alluded to in the introduction. Written in polar
co-ordinates, they take the form

VY(p) = span{e*" J,(kr)\n=0,...,p} (24)

where the functions J,, are the Bessel functions of the first kind (see e.g. Reference 39). The second
type are systems of plane waves given by

2
W(p) = span{exp(ik(x cos0; + ysin0;))|0; = ;nj,j =0,...,p— 1} (25)

Remark 8: The spaces V" (p), the spaces of ‘generalized harmonic polynomials’, share the
optimality properties of the harmonic polynomials for the approximation of harmonic functions
on discs (see Section 5.2); the spaces V'V (p) are optimal in the sense of n-width for large classes of
rotationally invariant spaces of solutions of Helmholtz’s equation on discs.

Remark 9: The numerical examples below are based on the spaces W (p) . In all computations
we chose p to be of the form 2 + 4m, m € N, so that the exact solution of problem (23) is not an
element of the PUM space.

The approximation properties of these two types of spaces are very similar to the usual
harmonic polynomials. In fact, we have
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750 I. BABUSKA AND J. M. MELENK

Theorem 4. Let Q = R? be a simply connected, bounded Lipschitz domain. Let § > > Q and
assume that u € L*(Q) solves the homogeneous Helmholtz equation on Q. Then

inf lu — upHH‘(Q) < Ce ul @
u,e V¥(p)

inf [jlu— Wyl < 66_”’”“"” ull 2@
w,e W(p)

where C, C, v, and § depend only on Q, Q, and k.
Remark 10: For the solution of the model problem (23), Theorem 4 can be strengthened:

inf |lu— Up g < C(y, Q, kye~»
u, € V¥(p)

inf flu—w,|nq <C@,Q ke
u, € Wip)

holds for any fixed y > 0.

Theorem 5. Let Q be a simply connected bounded Lipschitz domain, star-shaped with respect
to a ball. Let the exterior angle of Q be bounded from below by in, 0 < A < 2. Assume that
u e H¥Q), s > 1, satisfies the homogeneous Helmholtz equation. Then

) lnp A(s—J) )
inf  Ju—uylmeo < C; <p> lullm@, j=0,...,[s]

u, € V¥(p)

2 )\ A= J)
inf fu—u,|po < C; <1n_p> lullp@y J=0,...,[s]
u, € W(p) p

The PUM can be based on either approximation space. In the numerical results below, we
concentrate on the PUM based on the spaces W (p) of plane waves (for a comparison with the
‘generalized harmonic polynomials’ V¥ (p), see Reference 5). The domain Q is covered by square
patches and the partition of unity consists again of piecewise bilinear functions as described in
Section 6. The local approximation spaces V'; are taken as the spaces W (p).

Remark 11: The theorems above merely address the issue of approximability; we do not deal
with the delicate question of stability of the finite element methods based on these spaces. Suffice
it to say that the spaces created by the PUM are stable under the assumption that the mesh size
h is sufficiently small with respect to the wave number k (see Reference 5). However, as can be seen
in the numerical results, the PUM performs very well as a p version for very coarse meshes.

In Tables I-VI the PUM is compared with the usual Galerkin finite element method (FEM),
the generalized least-squares finite element method (GLSFEM) of Reference 40, and the quasi-
stabilized finite element method (QSFEM) of Reference 41. Since all three methods are based on
piecewise linear functions on uniform grids, Tables I and II include the piecewise linear best
approximant for reference. The FEM, GLSFEM, and QSFEM differ in their choice of the
bilinear form. In particular, the bilinear form of the QSFEM is constructed such that ‘pollution’
(see Reference 41) is minimized, and thus the QSFEM is virtually the best method available which
is based on piecewise linear functions. We will see that the PUM compares very favourably with
the QSFEM.
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THE PARTITION OF UNITY METHOD 751

Table I. DOF necessary to obtain accuracy ¢ in L? norm; k = 100

¢ (%) best QSFEM GLSFEM FEM
approximant
30 2:045D + 3 3969D +3  2:016D +4  7784D + 4
10 5:041D + 3 1-000D +4  6:150D +4  2:352D + 5
5 8464D + 3 19960D +4  1-274D +5  4692D + 5

Table II. DOF necessary to achieve various accuracies in L? for PUM with n = 4 and various
other methods; k = 100

P L? error (%) PUM Best approx. QSFEM FEM

26 10-8 6:50D + 2 3-80D + 3 795D +3 208D + 5
30 0-69 7-50D + 2 589D + 4 123D +5 323D+6
34 0-11 850D + 2 345D + 5 723D +5 190D + 7

Table III. Number of operations using band elimination— the p version of
the PUM; n = 4; k = 100; error in L?

) L2 error (%) PUM QSFEM FEM

26 108 176D + 7 63D + 7 43D + 11
30 0-69 271D +7 15D +10 101D + 13
34 011 394D +7 52D+ 11 36D + 14

We discuss the cases k = 100 with the L* norm as the error measure and k = 32 with the H' as
the error measure. Tables I-1V show the performance of the PUM in comparison with the other
methods for k = 100 and the L? norm as error measure. Table I shows the number of DOF
needed to achieve a certain L? accuracy for the various piecewise linear methods. We see that the
QSFEM needs 2 times as many DOF as the best approximant, while the GLSFEM needs 10-15
and the FEM 40-50 as many. Table IT shows that the p version of the PUM can achieve the same
accuracy as the other methods with markedly fewer DOF. This can be attributed to the
exponential approximability of the PUM: According to Remark 10 the approximation properties
of the PUM space based on plane waves W (p) are exponential in p, whereas the h versions of the
piecewise linear methods can only have algebraic rates of convergence. This explains why the
discrepancy between the PUM and the other methods becomes more pronounced for high
accuracy: in order to achieve 10 per cent accuracy in L?, the best approximant needs 6 times as
many DOF as the PUM, whereas it needs 400 times as many as the PUM to achieve 0-11 per cent
accuracy. Table III shows how this reduction of DOF translates into a reduction in the operation
count if a direct solver (band elimination) is used. Again, the PUM outperforms the QSFEM and
the FEM for the case of 10-8 per cent accuracy and is greatly superior for high accuracy.

In Tables I-1II we saw the performance of the PUM as a p version. Table IV shows the
performance of the PUM as an hp version by listing the number of operations for the band
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752 I. BABUSKA AND J. M. MELENK

Table IV. Number of operations for hp version of
PUM; k = 100; L? error

p n L? error (%) NOP PUM
26 4 10-8 1:76D + 7
18 8 10-6 523D + 7
14 16 9-5 2:75D + 8

Table V. Operation count for solving linear system; error in H' norm; k = 32

Galerkin QSFEM
/DOF H*' error (%) No. iter NOP H*' error (%) No. iter NOP
32 65 232 451D+ 6 30-5 272 529D + 6
64 217 434 337D + 7 14-3 492 382D + 7
128 816 831 2:68D + 8 7-02 953 2:96D + 8
256 3-64 1665 207D+ 9 348 1863 231D+ 9
512 1-72 3263 1-62D + 10 1-69 3752 1-86D + 10

Table VI. Operation count for band elimina-
tion for PUM; k = 32, error in H; n =1

p H* error (%) NOP PUM
18 46 13D +5
22 67 23D +5
26 0-38 38D + 5
30 0-00025 59D + 5

elimination for various combinations of p and h = 1/n which result in an accuracy of ca. 10 per
cent in L? We see that the operation count increases with n (and thus with decreasing p). This can
again be explained by the fact that the PUM spaces feature exponential approximability as
p versions but only algebraic approximability as h versions.

Tables V and VI illustrate the case k = 32 with the H' semi-norm as the error measure. The
linear system of the usual FEM and the QSFEM is solved using the iterative scheme proposed by
Freund*2. We compare the cost of these iterative schemes (Table V) with the cost of the band
elimination for the PUM (Table VI) as a p version (n = 1). We see that the PUM is cheaper than
the QSFEM, which is virtually the optimal method for piecewise linear ansatz functions. The
PUM is cheaper in the whole range of accuracies (50-0 per cent). As in the case of DOF versus
L? accuracy above, the disparity between the PUM and the other methods becomes bigger for
high accuracy: for 50 per cent error, the PUM is 30 times cheaper than the FEM, and for 1 per
cent the PUM is 10° times cheaper!

Remark 12: In the operation count for the PUM (Tables IV and VI) only the contributions of
the band elimination are reported. This is justified by the particular structure of the problem
under consideration. The mesh is uniform, the partition of unity consists of piecewise bilinear
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functions and the local approximation spaces are spaces of plane waves. All of this can be
exploited in the construction of the stiffness matrix, and the resulting cost of the generation the
stiffness matrix is of lower order compared with the cost of the linear solver.

The numerical examples show that the PUM performs much better than the usual & versions
both in terms of error versus DOF and error versus operation count. This is due to the fact that
the PUM allows us to use local approximation spaces that capture the local behaviour of the
solution very well, even if the solution is rough. In this example, the approximation with plane
waves is very efficient although the wave number k is large (k = 32, k = 100). We saw that the
PUM outperforms the h version for accuracies of practical interest (50—1 per cent in H', say) and
that the PUM is immensely superior for high accuracy.

8. A POSTERIORI ERROR ESTIMATION

A posteriori error estimation for finite element solutions obtained by the PUM is possible if local
problems on the patches Q; " Q can be solved (or suitably approximated). In order to demonstrate
this, let us consider the model problem

Lu = —div a(x) grad u + ¢(x) u = fe L*(Q) on Q
u=20 OnFDCaQ,FD§£Q)
o = a(x)0,u=ge H Y*Ty) onTy=0Q\I, (26)

where a, ¢ are bounded functions and satisfy the inequality
0 < a < min(a(x), c(x)) < max(a(x), c(x)) <f < w©
The weak form of this problem is to find u e Hp(Q) such that
B(u,v) = F(v) Yve Hp(Q) = {ve H'(Q)|v=0on I'p} 27

where the bilinear form B and the linear functional F are defined in the standard way. The
conditions on the coefficients a, ¢ imply that

ol u ”%1'(9) < B(u, u)
| B(u,v)| < Bllu HH‘(Q) HUHH'(Q)

Let Vgg be a conforming PUM space, ie. Vip = HHQ). Then, the finite element solution
upg € Vg 1s defined by

B(upg, v) = F(v) Vve Vg < Hp(Q) (28)
On each patch Q;Q, we introduce the local problem
find ;e W; B, v) =B — upg,v) Vve W, (29)
where
W;={ve H(QnQ)|v=0o0n dQnQ\Iy} (30)

Remark 13: If we require the PUM space to be of degree 2, ie. if Vg < HH(Q)N CHQ),
integration by parts allows us to express the right-hand side of (29) explicitly in terms of the given
data L, f, and ¢:

B(n;, v) = B(u — upg, v) = J

Q,nQ

(f— Lugg) vdx + f (g — o,upg) vds (31)

I'y
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754 I. BABUSKA AND J. M. MELENK

In this last integration by parts argument, we made use of the assumption Vg = C*(Q). This is an
important simplification in practice because in that way, the evaluation of the right-hand side of
(29) requires only knowledge about ugg and its derivatives on the patch Q; N Q. If the space Vg is
less regular (e.g. Vg = C(Q) and piecewise C?) the integration by parts argument introduces
additional terms related to the jumps of derivatives; restricting ourselves to the case Vg = C*(Q)
removes the necessity to determine the points where these jumps may occur.

Before we proceed to prove Theorem 6, which relates the error of the finite element solution to
the local functions 7;, we need to impose some approximation properties on the local approxima-
tion spaces V.

Definition 3. A collection V; of local approximation spaces has the uniform Poincaré property if
there is C, > 0 independent of i such that

1. for i such that Q;nT'p = 0, V, contains the constant functions and
inf,zflv— 4 HLZ(ninn) < Cpdiam(Qy) [|v HHI(Q,.nn) Vve Hl(QimQ)

2. for i such that Q;nTp # 0
[v[l2@n0 < Cpdiam(Q) | vllgone Yve {U € Hl(QiﬂQ) [v=0on FD}

Theorem 6. Let {Q;} be a cover of Q and {¢;} a (M, C.,, Cg) partition of unity subordinate to the
cover {Q;}. Let the local approximation spaces {V;} have the uniform Poincaré property and assume
that v; = 0 onT'p for v; e V; with Q;nT'p # 0. Then there is C = C(a, §, M, C.,, Cg, Cp) > 0 (Which
is explicitly available from the proof below) such that

1/2

1/2
c! <Z Wilzil(sz,-nn)> < lu—upellgi@ <C <Z |'1i|1%11(9im9)> (32)
where upg and n; are defined in equations (28) and (29).

Proof: The proof follows very closely Reference 43. First, we observe that the finite element
space Vg constructed by the PUM is conforming, ie. Viy < Hp(Q). Furthermore, we have
W, = Hp(Q) by continuing the elements of W; by zero on Q\(Q; Q).

By the coercivity of B, the orthogonality relation satisfied by ugg, and the fact that )" ,p; = 1
on Q, we have

oflu— uFEH121‘(Q) < B(u — upgp, u — upg)

= B(u — upg, u — upg — pp) VUpg € Vg

=B <u — Upg, Z @Qi(u — upg — Ui)> Upg = Z i, v;, V;EV;

= Z B(;, ¢i(u — upp — vy)
1/2

1/2
<p <Z [ '7i|1211(9m9)> <Z [ @:i(u — upg — v;) |1%11(9m9)>

where we made use of the fact that ¢;(u — upp — v;) € W; = Hp(Q). The uniform Poincaré property
gives the existence of v; € R such that

[u — upg —v; ”Lz(ﬂir\Q) < min(1, C,diam(Q;)) | u — ugg HHl(QimQ)a
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THE PARTITION OF UNITY METHOD 755

and thus we can estimate

Z | @i(u — upg — HH (QinQ) Z C lu — upp —v; \|1%2(9in9)
i

+ 2C§o [V(u — upg — v;) sz(ﬂir\ﬂ)
C2
2
TIS=EV) — Uil @in
dlam(Q )2 [l u 22 @ne

< Z (3C3 + ZC%;CIZ;) lu — upg ‘lIZI‘(QinQ)

M@3CL + 2CéC,2,) lu — upg le-l‘(Q)

where we used Lemma 2 below. This gives the upper estimate of (32). For the lower estimate, we
use the fact that each n;e€ W; = Hp(Q) and thus

Z”’?zHHl(QnQ IZB ’71:’7)
a! ZB(” — Upg, ;) = OCIB<“ - uFEsZ”i)
Z’?i

< ﬁ“ﬂ lu— uFEHII‘(Q)

i H'(Q)
1/2
< Po | u — upg | o/ M <Z 11 |121'(Qimﬂ)>
where we made again use of Lemma 2 below. This concludes the proof of Theorem 6. O

Lemma 2. Let Q be an open set, {Q;} be an open cover of Q satisfying the pointwise overlap
condition

card{i|xe Q} <M VxeQ
Let u, u; € H(Q) be such that

supp u; < closure({; Q)
Then

Z H”H%I"(Q,v) M H“”%I"(Q), k=0,
i

HZ u; HH"(Q) MZ [| u; HH"(QmQ) k=0,1

Proof: We will show the case k = 0, the case k = 1 being handled similarly. Let y; be the
characteristic function of the domain Q; Q. Then

ZJ Iu|2=2j xilu|2=f inlulstJ lul®
i Qimﬂ i JQ Q g Q

This proves the first estimate. For the second estimate, we use the overlap condition and the
condition on the supports of the functions u; to see that for each x € Q, the sum on the left-hand
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756 I. BABUSKA AND J. M. MELENK

side extends over not more than M terms. Therefore,

2
J <Z ”i) < f MY lu;* < MY “u‘|i2(ﬂinﬂ) O
o Q i :

i

Remark 14: The proof of Theorem 6 shows that the uniform Poincaré property could be
weakened. It is enough that the L? projections IT;: H'(Q;nQ) — V; satisfy

[ TL;u [ 1 @ing) < Cp 1t ging
lu — ILu| 20,n0 < Cpdiam () [|u || 1qine
Remark 15: The existence of the uniform Poincaré constant is related to a certain uniformity of
shapes of the patches. More precisely, for any bounded domain D, the constant A, defined by
. u— 2
/171/2 = sup inf ”7//%
ue HY(D) neR HVU”LZ(D)
is the second (i.e. the first non-zero) eigenvalue of the Neumann problem
—Au=Ju onD
J,u=0 on dD
Remark 16: Let us note that a simple scaling argument shows that the uniform Poincaré
constant of Definition 3 depends only on the shape of the patches and not the diameters. Thus,

one simple way to enforce a uniform Poincaré property is to restrict the number of possible
shapes of the patches Q;NQ.

Let us outline sufficient conditions on the patches Q; " Q that guarantee the uniform Poincaré
property of the local approximation spaces V; based on the following lemma.

Lemma 3. Let Q = R" be a convex domain, u e HYQ). Then

o, 1=tm
lu—ullig < <|Q|> (diam()" || Vit || g (33)
where u is the average of u over Q
1
u=—~1\_ u 34
L) J 4

|Q| stands for the volume of Q, and w, is the surface of the unit sphere in R".
Proof: From Section 7.8 of Reference 44. O

For patches Q;nQ such that Q;nT, = @, Lemma 3 gives the uniform Poincaré property if
Q;nQis convex and if there is p > 0 such that each patch contains a ball of radius p diam(Q;) (and
is trivially contained in a ball of radius diam(€2;)). Note that this is a reasonable restriction on the
patches in view of condition (6).

Let us now turn to the patches close to the boundary where the Dirichlet conditions are
prescribed. For simplicity, consider a two-dimensional setting, assume that the patches Q; are
discs, and that Q;~Tp # 0, Q, ATy = 0. Moreover, let Q; T, be a straight line segment. If Q; " Q
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is less than a half-disc (but Q; Q still contains a ball with diameter p diam((;)), the reflection
across I'p yields a convex domain Q < Q,. For ue H(Q;~ Q) such that ulr, = 0, the antisymmet-
ric extension across I'p gives an H'(Q)) function with zero average, and thus Lemma 3 gives

2 .
2lu HLz(QmQ) = ullrz@ < 7 diam(Q)) | Vu HLZ(QmQ)

The case that Q; " Q is bigger than a half-disc can be reduced to the above one by an appropriate
mapping. The necessary condition for the Poincaré constant not to degenerate is that the length
of the line segment Q;"I'p > p diam(Q).

The case Q;IT'p # 0, ;T # 0 can be dealt with using similar ideas. Again, the necessary
condition is that the length of the line segment Q;"T', = p diam(Q;).
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