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m MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIOGE

{(Vol. 21, n’ 2, 1987, p. 199 & 238)

THE h-p VERSION OF THE FINITE ELEMENT METHOD
WITH QUASIUNIFORM MESHES (*)

by I. BABUSKA ('), Manil SURI (%)

Abstract. — The classical error estimates for the h-version of the finite element method are
extended for the h-p version. The estimates are expressed as explicit functions of k and p and are
shown to be optimal. The estimates are given for the case where the solution w € H"and the case
when u has singularities at the corners of the domain.

Résumé. — Les estimations d’ervenr classiques de la version h de la méthode des éléments finis
sont étendues aux cas de la version h-p. Ces estimations sont exprimées explicitement en fonction
de h et de p, et on monire qu'elles sont optimales.

Ces estimations sont données dans le cas ol v appartient @ H* et dans le cas ot u présente des
singularités aux coins du domaine.

1. INTRODUCTION

There are three versions of the finite element method : the A-version, the
p-version and the A-p version. The A-version is the standard one, where the
degree p of the elements is fixed, usually on low level, typically
p=1,2,3 and the accuracy is achieved by properly refining the mesh. The
p-version, in contrast, fixes the mesh and achieves the accuracy by
increasing the degree p of the elements uniformly or selectively. The A-p
version is the combination of both.

The standard h-version has been thoroughly investigated theoretically
(see e.g. [1, 9, 20) and others) and many program codes are available, both
commercial and research. The p-version and the A-p version are new
developments. There is only one commercial code, the system PROBE
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200 1. BABUSKA, M. SURL

(Noetic Technologies, St. Louis) ('). Theoretical aspects have been studied
only recently. The first theoretical paper appeared in 1981 (see [6]). See also
[2, 5,7, 10, 11, 14] for most recent results. For the numerical, computatio-
nal, implementational and engineering aspects of the k-p version we refer to
(3, 21-24].

The classical form of the error estimate for the A-version with quasiuni-
form mesh is

(1.1a) lit = trell yrqy = € @Y Niko]] e,
where
(1.1b) N =min {(k, p + 1).

and the constant C (p) depends on p in an unspecified way. (See e.g. [1, 9,
20] and others.)

The main purpose of this paper is to analyze the A-p version with a
quasiuniform mesh and uniform p and get an error estimate which is
simultaneously optimal in both p and #. We show that the estimate (1.1) can
be written in the form

Al
(1.2) sy — tige ”Hl(g) =C ;,r;‘__l l| w0} YO

with
m=min {k,p+1)

and C independent of A, p and u,. We will also prove estimates for the A-p
version when the selution has singularities in the corners of the domain and
in the case when essential {Dirichlet) conditions are prescribed but are not
in the subspace of finite elements. Finally, we will present a numerical
example illustrating the applicability of the developed (asymptotic) theory
in a range of & and p used in practice.

2. THE NOTATION

For Q< R? a polygonal domain, x = (x;,x,) & R?, we let L,(0) =
H%O), H¥Q), HY(Q), k = 0 integer, denote the usual Sobolev spaces. For
u € H*(Q) we denote by |}, ,and |u|, , the usual norm and seminorm,
respectively. For k = 0 nonintegral, we define H*(Q) and | % o DY the K-

(" In addition there is code FIESTA for solving 3 dimensionat elasticity problems having p-
version features but using only 1=p =4,
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THE A-p FINITE ELEMENT METHOD 201

method of the interpolation theory [8]. If / is an interval or a segment, then
we define H(1), |||l ;» ¥ =0 analogously.

For 0 =t =1, we will denote by | . {|, , the norm of the interpolation

space (H*(I), H{{I)),. This norm is equivalent to the | . }, , norm when
z;é-12-. Fort:%, we obtain a norm
‘ 1
Ou . “ %_1 =]. HE o(D)
which is not equivalent to the || . [| 1 , norm (see [17]). Moreover, if A is an
3

end point of /, we may analogously define 4| . ||, ; to be the norm of the
space (H(I), Hy(I)), where Hi(I) = {ue HYI),u(4)=0}.
Given p =0, let

Rp)= {Gpx) [x1} <o, 52| <P} .

For any €} — R? we will denote pg = sup {diam (B)|B a ball in Q}.
The set of all algebraic polynomials of degree (total) less than or equal to
p on Q will be denoted by #£;(Q). By 2;(Q) we will denote the set of ail
polynomials of degree less than or equal to p in each variable on {). For
I < R?a straight segment, we define 2 (T ) as the set of polynomials on T of
degree less than or equal to p in s (5 being the length parameter of I).
Let k = 0. Then by HE(R(x)) c H*(R(x)) we denote the space of all
periodic functions with period 2 k. By 6,(R(k)) (B2(R(x))) we denote the

space of all trigonometric polynomials of (total) degree (degree in every
variable) less than or equal to p.

3. THE MODEL PROBLEM
3.1, The formulation of the problem.

Consider the following model problem

3.1 —Au+u=f in Q
(3.2a) u=g on I

du 2
(3.26) Fr b on T

where © < R? is a polygonal domain with vertices A;, i =1,...,n+1,
Al = Au+15

M= {J) L, I’= \,J T;, T=T'ul?,

F=iy, iy, F=i1s s ing
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202 . BABUSKA, M. SURI

Figure 3.1. — The scheme and notation of the polygonal domain.

T' is the boundary a2 of 2 and [, j =1, ..., n, are the open sides of the
boundary 44} (see fig. 3.1).

The internal angle at A, is denoted by w;. We allow the possibility that
o; = 7 or 2w The case w; = 2 = describes the slit (cracked) domain while
the case w; = = is introduced to deal with the abrupt change of the type of
the boundary condition or with nonsmoothness of g or b at the correspond-
ing vertex. When Q is stated to be a Lipschitz polygonal domain, then it will
be assumed that «, <27, i =1,2,..,n

Let AY Q) = {ve H(Q),v =00nT?}. For u, v e H{(Q) we let

@ o= |

uv dx , (u,v)l,g=J {(Vie . Vo +uv)dx.
0 i

We interpret now (3.1) and (3.2) in the standard variational sense namely
we seek 1 € H'(Q1) so that

(3.3q) u=g on I
and
(3.3) @ 00 = (fs O+ Lbuds

holds for all v e H}(Q).
We will assume that the solution « of (3.1} and (3.2) is

(3.4) H=U +U;+ Uy
where
(3.4a) w e HYQYN BYQ), k=1
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THE A-p FINITE ELEMENT METHOD 203

(3.4b) u, € HYO), ky =312
(3.4¢) uy =Y a;uy; € Hy(Q),

i=1
(3.4d) Uy ; = riui ]108 ":‘I% @:(6;) x; (r;)

where r;, 8; are polar coordinates with respect to the origin located at the
vertex A;, o;>0, v, =0 integer, ¢;(8;) is an analytic function in
8, and x;(r;) is the C® cut-off function so that u; ; =0 for r,=p; >0,
p; sufficiently small.

The form (3.4) is the typical form of the solution of (3.1)-(3.2) (and of a
system of second order) {see e.g. [4. 12, 16]). The assumption that
k = 3/2 is usually satisfied in practice and hence is not a severe restriction.

3.2. The finite element method

Let .# = {6"}, h=0 bc a family of meshes B"= {S§!} where
S is an open triangle or parallelogram. Let Ag: = diam (§*) and
pgh be as defined in Section 2. We shall assume that the family {G") is

regular in the sense that there exist positive constants o, v independent of &
such that for all $*e G* G*e . #

(3.5a) max hgh = h
h
(B.Sb) h_s‘h =T
hgh
(3.5¢) e,
Psh

(Condition (3.5b) is obviously the condition of quasiuniformity of the
mesh). Further we assume that with ®%= {§f}, i=1,2,...,m,,

"y

Q= U?‘:’ and that each pair $, Sj,'-‘, i 3 j has cither an entire side or a
i=1

vertex in common, or has empty intersection.

Let F ;h be an affine mapping with Jacobian having positive determinant
which maps S} onto the standard square @ = (—1,1)x (- 1,1) when
SJ'-‘l is a parallelogram and onto the standard triangle

T= {(xp,xz)| _1<xl<1,—1<x2<;x1}

when § ;‘ is a triangle. Let now ¥~ ;,'(.0.) c H'(Q}) denote the set of functions u
such that if wug denotes the restriction of u« to Sfe 6" then

vol. 21, n” 2, 1987



204 L. BABUSKA, M. SURI

ugto (FF) '€ 2LQ) if S} is a parallelogram and ugso (Ff) ' € #5(T) if
Sl is a triangle. We will then write ush € #, (5F) and u € ¥")(2). Further-
more, we let ¥4(Q) = ¥ }(Q) n AY(Q).

The mesh G" on Q induces a partition %) = {yfj} JF=1,2,...,m()of
I, i=1,...,n Denote by Nl-"_!-, i=0,1,...,m(i) the nodal points of
£} (i.e. the end points of v} ;). We let ¥ X(T,) < H'T,) be the set of
functions u such that the restriction .4 of  on v j is a polynomial of degree

= p. Moreover, ¥ 3 T)cv¥ ;‘(I‘i) will denote those polynomials that vanish
on N!,, j=0,1,....,m(i).
Let ghe ¥ *(I';) be the approximation of g (see (3.2)) described
S
below. The h-p version of the finite element method consists now (for given
p and k) of finding u € ¥ () such that

(3.6a) uj =gr on TI?
(3.6b) W ha= (fovdoas | bods
I

holds for all ve ¥4(Q).

To define gg we denote by gr, the restriction of gon I'; I'! and assume
that gr, € H'(l;) with r= 1.

We define now gﬁ, p =1 so that

(3.7a) Q;,r,. € ’V;I(FE) ) Il

(3.76) ghr(NED=g(N!), j=1..,m@), i=ig.. i,

(3.7¢) J (gh 1) wds = J. gwds, TI;cr!
i I
holds for all w e ¥ A(T,).

Remark : If we restrict (3.7b}to j =0, m(i)only (N} =4, N} 4=
A; 1), then (3.7b) is satisfied as a consequence of (3.7¢).

4. THE CONVERGENCE OF THE b-p VERSION: THE CASE OF THE SOLUTION
ue HNQ)

In this section we will analyze the rate of convergence of the A-p version
when the solution of (3.1), (3.2) has the form (3.4) with u, = 0.
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THE h-p FINITE ELEMENT METHOD 205

4.1, Basic approximation results

We present here some approximation results which will play an essential
role later.

LEMMA 4.1: Let S = Q or § = T be the standard square or triangle. Then
there exists a family of operators {#,},p =1,2,3, ..., &, HYS) > P,(5)
such that for any 0 <q <k, ue HYS)

(4.1a) Ju—aul| <Cp= % ul, s, k=0

(4.15) |- mu)x) | <Cp~* Djul, s, k=1, xe§

where we denote P,(S)= PLS) for S=Q and P(8) = PUS) for
§ = T. The constant C in (4.1a), (4.1D) is independent of u and p but depends
on k.

Moreover, if ue P,(S), then i,(u) = u.

Proof: The proof of this Jemma is an adaptation of the proof given in [5].
Hence we will only outline the proof. .

Let ry > 1 so that § < R(7,). Since § is a Lipschitz domain, there exists an
extension operator T mapping H*(S) into H*(R(2 ry)) such that

(4.2a) Tu=90 on R(2r0)—R(%r0)
(4.2b) [¥4Z ”k,R(zro) =Cllull, s

where C is independent of u. For a concrete construction of T we refer, for
example, to [4, 19].
e
2
(4.3) R(Zrg) 3 x = (x4, x5) = ®(§)

= (2rsin &, 2rysin &)

Let ¢ be the one-to-one mapping of R( ) onto R(2ry):

with (&, &) =£€R ( z )
Further, we let

= _ 3
(4.4) R=€D][R(§r0)]r:R(%)
where ®~! denotes the inverse mapping of ®. Let v = Tu and
(4.5) V€)= v(®(5).
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206 1. BABUSKA, M. SURI
Because of (4.2a) we easily see that

(4.6) Supp V (§)c R.

In addition it can be readily seen that

(4.7a) V € Hgp(R(m))
(4.7b) IV 4e remy = Cllnlly s

(4.7¢) V {&)is a symmetric function with respect to the lines £ ; = + :g- )

—

i=12.
Let us expand the function V in terms of its Fourier series

V(gl’ g?_) = Z z a}_! ei(.’f[*l&g).

j=-w l=-»

For any p = 1 we define

l) for § = Q:
(4.802) wnV=3 Y aﬁei(j§1+fg2)
lil=p |!] =p
ii) for §=T:
(4.80) V= 3 eyt

L+ 1] =p

Then quite similarly as in [5] we have for 0 =g =<k
(4.9a) IV - %V | ey <€~ ull s k=0
(4.95) f(V -, VED| = Cp ® Dul, g, k=1.

Because (7, V)(® '(x)) € 2,(5) and ® is a regular mapping of R(ry)
(ro - % ) on 5, (4.9) yields the lemma immediately.

Let us quote now the following scaling resuit.

LEMMA 4.2 : Let Q and Q" be two open subsets of R" such that there exists
an affine mapping F(x)= B{(x)+b of Q" onto O and F(Q") = Q. Let
diam (1) =1, pg =K, diam (Q*)=h, ppr= Kh. If the function
b e H™(Q), m= 0 integer, then v = o F € H™(Q") and

[ =11

(4.10a) 0= ChE [B],

M? AN Modélisation mathématique et Analyse numérique
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THE A-p FINITE ELEMENT METHOD 207

=

(4.105) 6] . <Ch 2 |v]. o
m, £} m, L)

where C depends on K and K but not on Q, h, v.

For the proof see [9], Theorem 3.1.2.
The estimate of the error of the approximation of g by gﬁ is given in

LEMMA 43: Let r=1,0=<t=<1, p=1, then

(4.11a) olg - gl =€ % 191,
hv—f

(4.11b) ollg—gﬁll,,rﬁCF||9||r,r,

where

(4.11¢) v=min {r,p + 1)

and C is independent of g, p and h.

The proof is given in [13]. The main idea is to expand ¢’ in Legendre
polynomials on every v/ ; of the partitioning of I'; induced by the mesh
6", prove (4.11) for r and ¢ inte3ral and by the interpolation argument
obtain (4.11) in full generality.

Let us prove now :

LEMMA 4.4 : Let S" and § be the triangle or parallelogram satisfying the
conditions of Lemma 4.2. Then for any 1€ H¥Q) corresponding to the
function u e HY(Q"), k =0 we have

(4.12) inf & —pll, o = Ch* " Mul, g
FEENCY

where p = min (p + 1, k) and C depends on K, K, k but is independent of p
and u.

Proof: For k = 0 the result follows immediately from Lemma 4.2 taking
p =0. Hence let k= 0. Assume first that &£ is an integer. Then

k k
i Ji—pl, o= inf {Ja-pl o+ ¥ Bl a+ ¥ |p|i,n}
pe@ () ﬁEﬁ’P(ﬂ} i=p+l i=p+l

vol. 21, n° 2, 1987



208 I. BABUSKA, M. SURI

k

where ' =0 for & <y +1. Using Theorem 3.1.1 of [9], we see that

i=u+l

P e (0}

4

=C ) R ul, gn (by4.100)
i=p

< CR* Huf, o

and (4.12) is proven for k integer. For gencrai & we use an interpolation
argument.
Let us prove now :

LEMMA 4.5: Let S" be a triangle or parallelogram with vertices
A, satisfying conditions (3.5). Let u e H*(S*). Then there exists a constant C
depending on k, v, o but independent of u, p and h and a sequence
z_;' € ?P(Sh), p=1,2,.. (see def. ofE?P(S") in Section 3.2) such that for any
O=g=k

Re-4

h
(4.13a) ”u—z],”q‘s,,s_cﬁI|u||k,sh, k=0
h*-1
(4.135) ;w-g)a)psclﬁfluﬂujh k=1, xe8*
(4.13¢) p=min (p +1,k).

If k=312, then we can assume that z}(A;) = u(A,).

Further, for ¢t — %

h

_;)
ollu -z, <€ i e lt, s

where v is any side of §,.
Proof: Let %, be the operator introduced in Lemma 4.1. Define now

w, s HYS") & 2,(5")
so that

a

p U= ('ﬁ'p(u oF_l))oF

where F is the linear mapping of $”onto 7, respectively  (see Section 3.2).
Denoting 1 = 1o F~ ! we get from Lemmas 4.1 and 4.4 for g <k

M? AN Modélisation mathématique et Analyse numérique
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THE h-p FINITE ELEMENT METHOD 209

(4.14) la -4, af_ o= | @-p)-#@-p)|,
<Cp~ -9 inf & =2l s
pe?,S) '

=Cp~ " Dh* Nul||, o
Combining (4.14) with Lemma 4.2 we get for O=sm=g=<k

|w—mpu|, a=<Ch* "p COuy g

and hence

(4.15) ||u7'n-ﬁu"q‘s,‘s Ch* - 9p- k-0 leell s -

Now analogously for k=1 and £ € §

(4.16) |2 —w,2)@#)| <Cp~ 1 inf |u—-p|,
Pe P8}
<= Cp~ ¢ Dar—Tul, o
and (4.13) is proven.
If £ = 3/2 then we modify z:,‘ analogously as in Theorem 4.1 of [5]. We get
zf,’(Aa-) = u{A;) and by interpolation

ofu—zp]|, < ChU=Dp & Djul, o

where «y is any side of §"
The proof of the following theorem is a modified version of Theorem 4.1
in [5}.

THEOREM 4.6 : Let u be the solution of (3.1-3.2), u e H*(Q), k= 3/2 and
for T, T let g, € H(T,), r=k — 1/2, where g, is the restriction of g to
L. Then for each p=1 and h =0, there exists ¢) € "V:,’(Q) such that

(4.17a) oh=g; on I

h R~
(4.175) ||u—¢p||1’ﬂ$CF (”““k,n"'z "ghr,r,-)
(4.17¢) W =min (p +1, k)

where gg is defined by (3.7) and C is independent of u, p, h, and
6"
First we will introduce

LeMMA 4.7: Let S=Q or S =T and let v = AA; be a side of S. Let
e P,(y) such that Y(A;)) =0, i =1,2. Then there exists an extension

vol. 21, n” 2, 1987



210 I. BABUSKA, M. SURI
vEP,(S)v=%ony, v=0o0n a5y and
(4'18) ||U||1,5$C 0||‘1’||1;2,y
where the constant C is independent of p and ¥,

The lemma follows from Theorems 7.4 and 7.5 presented in the Appen-
dix.

Proof of Theorem 4.6 : Let {S}} = 6" Then by Lemma 4.5 there exists
z! € P,(SM such that z}, =u at all vertices of S/. Let now "=
§¥n 8 and let N;, N, be the end points of ¥". Then z; -z}, =
w,—”;, is a polynomial on " of degree at most p, and w}f N =0,
i =1,2. We now map 5 U §} onto §; U §; by a continuous linear mapping
F where §; and S, are congruent images of (J or 7, suitably placed as shown
in figure 4.1.

Using the notation used in the proof of L.emmma 4.5 we get, by Lemma 4.5

. - a1

[l -~ zp.j”sz =C Pl ““"k,sj-"'

e -z, ||, i is analogously bounded. Also by Lemma 4.5,
»

OHW?JHI,Q,-\. 5‘0“'1 - f:’f||lm,y + 0“12 - fg-l]lm,-y
he-l

=C FI (H“"k,s}"" "u”k,sf) .

Applying Lemma 4.7 there exists § & 2,(5;) so that

”J’“szs‘onwf;f”xfz,y

¢=Wj'{ on oy
and A
¢=0 on 45;-v.

5j
h
L v - —,
T
St
Figure 4.1. — Scheme for the map of two neighboring elemenis.
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THE-h-p FINITE ELEMENT METHOD 211

: k sh ho_ Lk
Hence we can modify z; ; to £, ; so that 2, ;, =z, on v* and

122, —=ll,, st-CP el g+ el )

Repeating this process we construct #7 . similarly on each S’l

p.J
Defining & so that its restriction on S" is zﬁ j we get cpp ey :,‘(.Q)
"y h*
"u_‘PP”Ln‘“C _1” e a-

Flnally if 35 "NT! = v* % @&, we have to modify z ; so that z gg on
v". Using (4 11a) and realizing that

Y lgl?y < lgl?r,
i

we can proceed quite analogously as before and complete the proof.

Remark : By the imbedding theorem we have |ig|l, _,, = [|#], o and
hence the second term in (4.176) can be omitted.

4.2. The approximation results for 1 < k <32

In the previous section we analyzed the case when the solution u of (3.1)
(3.2) belongs to H*(Q)), k= 3/2. We will now analyze the case when
ue H(Q), 1 <k <= 3/2 and g = 0. In addition, we will assume that Q is a
Lipschitz domain.

As shown in [4], given any ? =0 and k=1, the function i can be
decomposed so that

(4.19) u=v+o
v e HY)(Q)
o' € HQ) N H(Q)
and for any £=¢g =1
(4.20a) o'l o=t lul, q

(4.20b) lofll, o=t hull, q-

e, a

Let 2=k=3/2, and 1=4¢g =3/2. Then by Theorem 4.6 there exists
¢h e ¥ 1(Q) such that

=0 on I

”(’ur_"Pg”l.nS [”k'g
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212 I. BABUSKA, M. SURI

since for p=1, min (p + 1, k) = k. Hence
||“*°P’5||1,n$ o'ty o + fo' - ‘szLn
g-1 R gk
SC(I +Ff )”u”q,ﬂ'

Choosing ¢t = h/p we get

q-—
@21 Ju-ebl, o= (%) pul, g—C  ull,

R

since
min {(p+1,q)=¢q, q =32,

We remark that the assumption that €} is a Lipschitz domain was used in the
proof of decomposttion (4.20}). (4.21) shows that in Theorem 4.6 we can
replace the restriction & = 3/2 by k > 1 provided that g = 0. In fact, we need
less namely that g|. € H'(I;), I; < T% r= 1.

4.3. The rate of convergence of the h-p version of the finite element method
We will prove now

THEOREM 4.8: Let ue€ H¥Q), k=1 be the solution of (3.1)-(3.2).
Assume further that g is such that

o= + Uy
u, € H'(Q) n A}Q)
u, € HYQ), ky=372

and that £} is a Lipschitz domain if k| <3/2. Let u‘,ﬁ' be the finite element
solution of (3.1)-(3.2) as defined in Section 3.2, then

(4.22a) " huln"‘c(k) -1 “”"k(z
(4.22b) k = min (kl, ky)
(4.22¢) w=min (p+1,k)

where C is independent of u, h, p but depends on §, 1, o

Proof: If g =0 then (4.22) follows immediately from Theorem 4.6 and
(4.21).
If g += 0, then denote by Uf,‘ the exact solution of the problem (3.1)-(3.2)
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when replacing g by g Denoting o = u — U? we see that

— Ao+ 0 =0

99 _9 on T?
on

w=g-gh on T'.

By Lemma 4.3 we have

hv—lr’z .
0"“’”1/2,1"1 iC“FZ'EE”“"r,r‘ where v=min (r,p+1)

and r = k — 1/2 by the imbedding thcorem. Because
"m"1J1=inf”U“Ln
over all v e HY() such that v = w on I, we have

he-1
[ell; o= Colloly, = C;}?__l lally q-

By Theorem 4.6 and the basic properties of the finite element method we
get for any &5 € ¥ (1),

"u_:;_ U:”LQSC”‘P;‘ U:”Ln
<C(fju—oplly o+ e - Upll, o)

h*—?
sthk‘1 Neell, o

and Theorem 4.8 is proven.

4.4. Optimality of the asymptotic rate of convergence

In this section we will prove that the estimate in Theorem 4.8 is optimal.
To do so we will use the concept of the n-width. For details, see e.g. [18].
Denote

D, (H'(Q), H*($)) = inf sup inf lu—vl, o
S,c H'(®) ueH* ves, ’
dimS,=n hellgo=1

the n-width in the sense of Kolmogrov. Then by Theorem 2.5.1 and 2.5.2 of
[1] we have

(4.23) D, (HY{Q), H* (1)) = Cn~ *-1/2
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Let us now compute the dimension of the space ¥ ;‘(ﬂ) in terms of p and A.

The number of elements is of order O ( hlz ) . Over cach element we have

2
O (p?) polynomial basis functions. Hence, n = dim ¥~ ;’(Q) =C ‘Z—z Hence
for p + 1= k we have
k-1
B\ k-1 -{=
(4.24) ||u—u;‘HLn-.<_C(k)(£—)) fall, o =Clk)n : )H“”k,n'
Comparing (4.24) with (4.23) we see that the estimate is optimal.

5. THE CONVERGENCE RATE OF THE bp VERSION, THE CASE OF THE SINGULAR
SOLUTION

In Section 4 we analyzed the rate of the h-p version when the solution of
(3.1)-(3.2) has the form (3.4) with u; = (. Now we will analyze the rate of
convergence in the case u = u, For simplicity and without a loss of
generality we will assume that n =1 in (3.4¢).

5.1. An approximation result

Consider the square R = R (%) defined in Section 2. Let (r, 6) denote the
polar coordinates with the origin at 0 (see fig. 5.1). For k=1 let

(-h,h)

h
th-d

(~h,-t) 3 ,-h) th,=h)
Figure 5.1. — Scheme of R(k), Q, S:O.
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Li:x;+h=xw(x,+k) Let S* be the region S.N {{r,8)|r<p}

(0 = p = g ) .
We will consider the approximation of a fumction r with support in

St for some kg > k which vanishes on the lines Ly, L We will assume that

the function # has the form
(5.1) u(r,B):r”‘[logr[“’xO(%)fb(ﬁ)

where @ and x, are sufficiently smooth functions (e.g. C® functions) such
that 0 s xp = 1, Xp(r) = 1 forOs_rsg,xo(r)=Ofor r32—38,0<5<1/2

and ¢(8,) = ©(6,) =0 where #,, 6, are polar coordinates of the lines
Lland L2

Let @ be the region bounded by the lines L,}ﬁ, qu, and x; = —g-,
X, = —g. We will estimate the approximation error |lu - uf,’“l, o

ul € ZR).
We first map R = R (k) onto the square R = R{1) by the transformation
X; . .
=2 or equivalently (7, ) = (5 : e). This maps Q into 0. Then, if

h h
H(fF,8) = u(r, 0) we have

(5.2) (7, 0) = h* 7 |log h#|" xo(7) ©(B)

where & = 0 on the lines L} and L2, the maps of L! and L2 Since v is by
assumption a positive integer, we have for A7 < 1

(5.3) u(# )= i C() 7 |logh|'|log 7|7 xo(F) ©(B) = iuf.

By Theorem 5.1 of [5] there exists 2, € 23, ,(R) such that z, = 0 on the
lines L} and £2 and

., h" _
||u,—z;‘,||1 Qsc-z_auoghv llogp|*~".
’ r
Hence, we see that
. L 2 5
5,= Y ek, (R,
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2,=0on L} and /2 and

) ) hl! hi _
(5.4) I8 =2,]], 5 =€ =5 3 llogh|* Jlog p|*~*
P
hﬂ
= C ——max (|log#|", [logp|").
p o

By suitably changing the constant in (5.4), we see that we may obtain a
i€ P(R) satistying (5.4). By Lemma 4.2 the same estimate holds for

2 — 2, so that we have

LEMMA 5.1: Let u be given by (5.1). Then there exists z, € QPI(R) such
that z, =0 on the lines L} and L? and

hu
(5.5a) "u_ZP“LQS‘Cg(h’p"Y)?x
where
(5.56) g(h, p, v) = max (|log £{", |log p|"}

and C is a constant independent of p and h.

5.2. The rate of convergence of the h-p version

We now return to the problem of approximating function u, given in
(3.4d). To this end let

Uy = U3z 1+ Uz

)
(5.6b) “3,2=“3(1—X0(%)) .

Obviously u; ; = 0 in the neighborhood of the origin.
Our first goal is to approximate wu;; over the set of triangles or
parallelograms having a vertex at the origin as shown in figure 5.2.

We will assume that OB, T and OB, ;T2 Let ' = \_JB: B, 1.
P=0
Then Lemma 5.1 yields the following result, the proof of which may be
found in [5].

where

(5.6a) U371 = Hj Xo(

ol |

LEMMA 5.2: Let u be given by (5.6a) with p (in the definition of
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Figure 5.2. — Scheme of the mesh in the neighborhood of the singularity.

Xo) sufficiently small (depending on ~ and o only), then there exists
z,€ H(Q), z, € 2,(8}), z, =0 on OB, and on T such that

hu
(5.7a) |fu—2p||H1(m$C9(h,P,'Y);2';

(5.76) g(h, p,v) = max (|log h[", |log p|")
where C depends on o, T but is independent of p and h.

Let us consider now the function u =u; , given by (5.66). We have
u = Q for r = ph. Further,

IDPu) = C(B)re~ I* |logr]”
where B = (B, B2), B; =0, Br+B:= iB| and
s 2181

U= .
axt axf?

Hence we have
(58) {Iuj[k,ns:_C(k)[logh_l‘Ymax (1,h°‘+1"k),

Denoting by u‘,',‘ the finite element approximation of u, we get by
Theorem 4.8
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(5.9) flu — "|[10<C(k) = lIIMIIM

n—k+a

<) |log A |Y
p*-

with k> 1 arbitrary and m =min (p +1, k). Let us take k=2a +1 in
(59). Then n—k+a=7m—-a—-1=min («¢, p—a) so that

min (o, g —
(5.10) Ju—utl, =B g
: p

If p is small with respect to «, we can select & so that C(k)r" *+o/pk-1
will be minimal. For example, with & =2 we get

(5.11) e —up), , = Ch®|logk|".
Combining the estimates for u; | and u, , we get:

THEOREM 5.3 : Let u be given by (3.4d). Then there exists ‘pg eV ’;(ﬂ)
such that

n . N hmin (o, p— o)
(5.122) |lu—¢p||1,nng(h,p,'y)mm h ,7——)
(s.126) §(h, p, v) = max ([iog A", [log p|")

and C depends on o, 7 but is independent of p and h.

Remark 1: When o« is an integer and v = 0, the estimate (5.12a) is very
pessimistic, since the solution u given by (3.4d) is smooth. When « is an
integer and v =0, then the estimate (5.12¢) is a correct one.

Let us now summarize in one theorem the error estimate for the A-p
version with quasiuniform mesh and uniform p.

THEOREM 5.4 : Let &} be a polygonal domain as introduced in Section 2.
Suppose that u, the solution of (3.1)-(3.2) can be written in the form (3.4).
Assume further if 1 < k| =< 3/2 that § is a Lipschitz domain. Assume that
u},‘ is the finite element solution with triangular and parallelogram elements
satisfying (3.6) and the boundary condition on T' defined by (3.7). Then

(5.13a) e ~ ugf, o =C max (&, &)R
i . o hmin (o, 0 — o)
(5.135) & = g(k, p,y;) min (h P )
p 1
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(5.13¢) g(h,p.v;) = max (|log #|™, |log p|™)
hmin(krhkzml.p)

(5.13d) 2 e TihD

P
(5.13¢) R= il o+ il 0+ 3 lal

and C depends on v, o in (3.5), @, k;, v;, o, but is independent of
B h op, o

Remark 2: We formulated Theorem 5.4 only in the frame of Sobolev
spaces. By interpolation arguments, it is also possible to formulate the
theorem in the frame of Besov spaces.

Remark 3 : We addressed only the case of the polygonal domain and
elements which are trianglies or parallelograms. By the standard mapping
approach, the results are also valid for curvilinear elements.

6. APPLICATIONS

In this section we will study the consequences of Theorem 5.4 in
connection with computations.

First let us mention that although we discussed the h-p version in
connection with the problem (3.1)-(3.2), all conclusions are valid also for
the elasticity problem. In (3.4d) we assumed that «; are real. In the case of
the elasticity problem, o; are in general complex with Re o; = 0. The
estimate (5.13) is still valid with a; = Re «;.

Our theory is of asymptotic character. Hence it is important to see the
applicability of Theorem 5.4 in the range of practical parameters. To this
end let us consider the plane strain elasticity problem when £} is an L-shaped
domain shown in figure 6.1.

Let us assume that on 8Q tractions are prescribed, i.e. I'' = &. The
solution of this problem is the displacement vector (i, i,) where

(6.1a) ul=%r“[(x—Q(a+1))cosaﬁ-acos (e —2)0]
(6.16) u]:%r“[(x+Q(a+1))sina0—accs (0 ~2)6]
where

o = 0.544 483 737
Q =0.543075579

G is the modulus of rigidity and k = 3 — 4 v where v is Poisson’s ratio which
we assume to be v = 0.3, T«e solution has a typical singularity at O. The
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B A

| | . !
f T 1
X y
Figure 6.1. — L-shaped plane elastic body.

sides OA and OF are traction free. Instead of the norm ||.l}, , we will be
interested in the energy norm || . || ; which is equivalent to the | . ||, o, norm.

Denoting W (), respectively W(u;‘), to be the strain energy of the exact,
respectively the finite ¢lement solution, we have

(6.2) [l — u;‘”E = (W(u) - W(ui)'?

and we define the relative error in the energy norm as

Wu) — Wiu™ 112
6.3) el 5 = [-—”—(’9}

Wiu)

In the next figures we will present the results of computations which were

performed with a computer program called PROBE [21, 23] developed by
Noectic Technologies Corporation, St Louis.

We will consider a uniformm mesh with square elements as shown in
figure 6.2.

The solution u € H'**~5(Q2), e = 0 arbitrary,
Theorem 5.4 gives for p =1 the estimate :

in (o, p—a)
(6.4) e — uf], < € min [h“, Ol ]

p2u

where C depends on a but is independent of # and p. Figure 6.3 shows the
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relative error in the energy norm |le|| . (for different degrees p) in

dependence on k. We also show the slope A% in the figure. We sce that with
respect to k the error is in the asymptotic range also for moderate p and A.

Figure 6.2. — The scheme of the uniform mesh.

40
] |
o 30 p=1 X
N |
30 P=2 4 i
% s 20 P=3 03~
Wi - .
p= 44 . T~
w2 s e A \x\
=y - ‘I’ . X
o S
] ) N
W= 10 . J_\%“--.._
*a 5 osaaa[ ST
Z 8 ] B
7 | |
6 L
1 1 L .
2 4q 6 8 10
MESH SIZE h
Figure 6.3. — The relative error in the energy norm in dependence on h.
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40 " i
S L |
30— —
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@ 1 ‘ .
§= 20 3 x:"‘*!_-.x_, —p=d+
SE TR e [
WS sfe S e NE—
= R e N A
E 5 . \{_;_‘_"_g | \,‘_\ |\

JE ST NN ||
22 o —>Eran BN
S I N N o ¢
< J= [ -l >ghg L
o | 0 | L
| 2 3 4 5678

DEGREE p OF ELEMENTS

Figure 6.4. — The relative error in the energy morm in dependence on p.

Figure 6.4 shows the error in dependence on p and different h. Because of
the size of computations, only in the case A = 1/2 is the error given for
p=4. (For p=4 and h = 1/10, the number of degrees of frcedom
N =5119). Estimate 6.4 gives the rate p~2® which appears only for
p = 3. For large p and small  we have N = p/h® and hence

N
(6.5) e — 2], =C =

(=0

{6.5) shows that if the measure of computational work is N, then the use of
higher p is preferable.

Figure 6.5 shows the dependence of the relative error in the energy norm
on thc number of degrees of freedom N for various p. In addition, the
performance of the p-version for A = 1/2 is shown in the figure. We see that
p =2 is more effective than p = 3, and asymptotically for p — oo, the higher
p are more effective as follows from (6.4). The p-version has a rate which is
twice that of the A-version (see also [3]).

We addressed in this paper only the case of the quasiuniform mesh. If the
mesh is strongly refined, then its performance is different. Figure 6.6 shows
the strongly refined mesh with # layers (n = 2). The mesh is a geometric
one with the ratio 0.15. The ratio 0.15 leads to nearly optimal convergence.
See [13, 14].
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Figure 6.5. — The relative error in the energy norm in dependence on N,
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DETAIL

2

Figure 6.6. — The strougly refined mesh with n = 2 layers.
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Figure 6.7 compares the performance of the /, p versions for the uniform
and strongly refined mesh for our example. The performance of the p-
version on strongly refined meshes is in practice very similar to the general
h-p version, leading to an exponential rate of convergence. We see that the
p-version performance depends very strongly on the mesh.

For more about
to [3].

the comparison between the 4, p and k-p version we refer

T

UNIFORM MESH P 4h'VERSI0N

' | ! 0——-Oh=p-VERSION
p=4

2t

'-VERssoml

+n=t #ﬁg \,
o====0 N=2 ™

\
frened N23 /ho\

RELATIVE ERROR [N ENERGY NORM lleilg g %

E
—on=5 p=5 | \\o\q\__ﬁo.s‘w
- B\ e
i \‘n_‘__\ p=5
80 100 200 l ‘Q
. _p<6
i
\
Val
)

400 8001000 2000 4000 8000
NUMBER OF DEGREES OF FREEDOM

Figure 6.7. — The error in the energy norm in dependence on N for various meshes,

7. APPENDIX

Theorems 7.4 and 7.5 proven in this section are slightly generalized forms
of Lemma 4.7 and are of interest by themselves.
Let us consider the equilateral triangle T = ABC as shown in figure 7.1.

We denote

vw=viu~vf=AP,UPB =48,
'Yz—'qu'Yz—A UPC=‘E,
13 = ¥ U ¢ = BP; U PiC = BC
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A=00) ¥2 R ¥} B0} X

Figure 7.1, — The scheme of the equilateral triangle.

The notation is also shown in figure 7.1. Let f € #,(v,). Then we define

f

(7.1) Fi(x,y) = P f(e)ar.

ﬁ;ﬂ‘ﬂ ‘-ﬂ‘e

The value of F| at a point P € T depends only on the values f along the
segment 40,5, Q) = (x - % , O) , Oy = (x + % , 0). We prove now
the following lemma.

LEMMA 7.1 : Let f € P, (v,) with f(A) = f(B) = 0 and let F|71 (x, y) be
defined by (7.1). Then

(7.2) a) FiYx,y)e 21(T)
b) F{fi(x,0) = f(x)
) [FI =Collfllyn,y,
d) Al P, p=Calflly 0=
&) | FU), o=Callflp O=k=1

ds) ||F}f1||mg <C|fllg,, O<k=1

i
Pl
i
oy

dy) ||F1lﬂﬁm§ =Clflg, O=k=1

where the constant C is independent of p and f.
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Proof: 1t is immediate that (7.2b) holds. Let f=x"with O=sn=<p
integer. Then

e
Fx, y)—ﬁj +f 1" de
N

s (o) )]
2”“*”““%)‘("’%” Pu(x. )
(n+1)‘n(x=y e 2,(T).

Hence (7.2a) holds.
To prove (7.2¢) we first extend f by zero to a function defined on the
entire x-axis R so that (see [18])

(7.3) Ffllinm=C ol fli 12,y

where we have used the same notation fto denote the extended function as
well, Then by (7.1) F;{x,y) is well defined on the entire half plane
Q= {(x,y)|y=0}. For {x,y)e @ we have

74 Fy(ey) = jm FUYHG =1, y)dt = (f + HC, 9))00)

whars
LR i)

\/3 A

2y’ V3 J3

= 0 otherwise.

Let §(£) represent the Fourier transform of the function g(x) in the x
direction. Then by (7.4)

(7.5) H{x,y)=

(7.6) Fi(g,y)= FIEYHE ¥)
where

N 1 V37 1 sin (&v/ V/3)
7.7 H{E, = Y gy = .
-7 HE ) Jzﬂy.[-y/ﬁe N T YN

Let & = {(£, y)|y =0} and calculate the H'(Q) norm of F(x,y). By
Parseval’s equality, we have using (7.6)

1E i = WEil oy = ﬂn|f(g)|2|gﬁ<a,y)|‘*dgdy+
+ ﬂn FO) & | dedy + ﬂﬁ \FE| A »)| s dy .
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Now letting z = y&/ V3 we get, by (7.7),

@ o )
‘ I, zd:IJ gsmzdzg_c‘
a9 |7 e - [T VAL G

Hence

(m)ﬂJﬂamw@wP@@s

sCJ 61 7@ de =< C I 12 n=Coll fIn, ..

Also

9 4 -5

which is bounded at z = 0. Hence

cosz sinz ]

F4 22

2 A | av=<ciel
JO !_é} : ¥ I y= )
s0 that

aw)ﬂJﬁmﬂgﬁ@nF%@s

scj 16| F© de=<Coll F12,, -

The third term can be bounded analogously. Using (7.8)-(7.10), (7.2¢)
follows. Incqualities (7.2d,), (7.2d,) follow immediately for £ =0, k=1
and hence by an interpolation argument {sec [8]) they hold for all
0=<k=l

We prove now (7.2d,;). Let the variable x be used to represent both the
distance from A along -, and the distance from A along -,. Denoting

(7.11) Gix)=12 J or:
*Jo
it is readily seen that
(7.12) Al F, = al GO, T=0,12).
Using (9.9.1) of [15], p. 244 we get

(7.13) 1G Mo, =€ 1 fllg, -
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Further, integrating (7.11) by parts we have
(7.14) 66)= 1)~ f0-1 [sr@ra
and hence
cw=rw+5[iroa-re
L e-nroadl| roa.

Using 9.9.5 of [15], p. 245 with r =2 we get

1 * ' 1
qu@—ﬂf@ﬂt <CUfYy,

X" Jo 0, f

and by 9.9.1 of [15], p. 244 we get
1 X
|2 rwal <ciri,.
0 0,

Hence
(7.15) NG G, =CHF Mo, -

Combining (7.13) and (7.15) we get (7.2d,) for k =0 and k = 1 and hence
by the interpolation argument (7.2d;) holds for all 0 < k =< 1. The inequality
(7.2d,) is essentially the same as (7.2d,) and Lemma 7.1 is completely
proven.

Let now f = f, € 2,(y;), i =1,2,3. Then we denote by Fi[f"}(x, y) the
polynomial extension of f; into T, defined for i =1 by (7.1) and for
i = 2,3 by (7.1) after properly rotating the coordinates. Obviously Lemma
{(7.1) is applicable for i =1, 2,3 when properly interpreted through the
rotation of the coordinates.

We now prove

LemMMa 7.2: Let T be the triangle as in figure7.1 and f satisfy
flA)=f(B)=f(C)=0 and f;=f|, € P,(Y;), i =1,2,3 where by
fl,, we denote the restriction of f on v;. Then there exisis ®, € 2,(v;),
i =1,2 such that

(7.16) a) U=F™+F™e2,(T)
b) U=f; on v, i=1,2
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O Ul r=Clolfillyy . +ol follyn, )

2
dl) AHq)i"k.T,$C|:ZUllfj”kr'\"j:l’ i=1,2, O=<k=1

=1

2
d2) Bl;q)luk"f?sc[ﬂll'flll""’er,-Zl ”ffllﬂm,-] ’

2
&) cl®ul, g =C el g+ 3 ||f;-||0,w] , 0<k=1
j=1

where C is a constant independent of p and f.
Proof: Let ®; € 2,(v;). Then as in Lemma 1 we define

X

(7.17) G,-(x):%J. ®,()ydt, i-1,2.
0

Condition (7.16b) will be satisfied if

(7.184) ¢1(x)+62(x)=<I>1(x)+%J:‘I’z(I)dl=f1(x)

T18)  B) + Gyle) = Dyx) + 1 L (1) dt = f1(x)

hold for all xe3 = (0,1). Since f; € #,(3) it is easy to see that
®; € 2,(3) satisfying (7.18) exist. Due to the assumption on f we have

f1(0) = f,(0) = 0. ®; are uniquely determined up to a constant K with
P (0)=K, ©,0)=0-K.
We now define

(119)  dy(x) = @y (x) + By(x), wyx) = Dy(x) - Dylx)
hi(x) = frlx) + folx),  Bylx) = f1(x)— falx)
so that (7.18) yields

(7.20) () + % L () dt = hy(x)
(7.208) ¥o(x) - % J: U () de = Ay(x ).

Here ¥, (x) is unique, §,(0) = 0, while ¢, (x) is unique up to the constant X
such that ¢,(0) = 2 K.
We first analyze (7.20a). By differentiation we obtain

X 1 ,
¢i—%J‘ n()de+ Lo = hf.
x° Jo X
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Using (7.20a) we get

24 h
(7.21) ll.ll + T = hl + ;

The homogeneous solution of (7.21) is 1/x% A particular solution can be
found by using the method of variation of constants. Hence, substituting

b (x)= T(JZC) into (7.21) we get
X

T'(x)=h{x*+hx
from which
Ui(x) = _Zj 2hj()dt + = j thy(t)dr .
Integrating by parts we get

(7.22) d;l(x):hl(x)—lzrzhl(t)dr.
x°Jo

the unique solution of (7.204).

We now show that

(7.23) Al ;= Calltilly,,  0=ks=1
Let
X X X
F(x)= J thi(t)dt = — f (x—t)yh(t)ydo +x J h(t)de.
0 0 0
Then
ﬁF(x) G(x) -~ Q@)
x* x?
where

Gx) = J (e — 1) hy(t) di
Qx)= J hi(t)dr.

Using (9.9.4) of [15], p. 245 with r = 2 and (9.9.1} of [15], p. 244 we obtain

IF G/, = 1G]y , + 1@l = Clitull,y,,
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which vields (7.23) for &k = 0. Next, differentiating (7.22) we get

r r 2 * hl ' 1 x 2
xJo x X~ Jo
Let
F(x):thzh{(z)dt=J (x — 2} B{() de
0 0
—xzj h{(t)dr+2xj thi(t)dr.
0 0
We have then
£SO _ 96y +re
where
Gx) = j (= LR RIGE) dt
0
14",,
0w =1 | moa
0
21",
R(x):-—zj‘ thi(tydr.
x°Jo
This gives

IF@)hg = 1GE) ], , + 1Q 0o 5 + RG], ; -

The first two terms can be bounded once more by | A
[15], p. 245 and (9.9.1), p. 244. Moreover,

fly ; using (9.9.4) of

R(x) = x% {_ L G =) h()dr +x j:h{(t)dr]

so that |[R,, can also be bounded by |A{|, ,- This yields (7.23) for

k = 1. By the interpolation argument (see [8]) we get immediately (7.23).
Let us consider now (7.208). Differentiating it and using once more (7.205)
we get

hy
(7.25) Yy = hi + =
Integrating we get

Lhy(t)
(7.26) Yi(x) = Ay(x) — J - dr.
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(7.26) is that solution of (7.20b) with 4,(1) = A,(1).
Once more we wish to show

(7.27) allbell, ;= Callhl,,, 0O=k=l.
Using (7.26) and (9.9.9) from {15], p. 245 with « = § we get
"le”D,; =C "h2"0,;§ -

Since 7,(0) = £,(0) — £,(0) = 0, {7.25) yields

s

1 ("
b =hy+ =1 hy(2)dt
2 3+ X JO 2( i
and by (9.9.1) of [15], p. 244 we get

A“%Hm = CAHhZHLJ'

An interpolation argument leads immediately to (7.27). Hence we have
constructed solutions of (7.204, b) such that (7.23) and (7.27) hold.
Coming back to (7.19), using k = 1/2 we see that for i = 1,2

AH(I)f”Ug,Y‘. = C{Aﬂf]Hlfz,h +A“f2"1a,~,2]

nd applying Lemma 7.1 we get immediately (7.16¢) and also (7.164,).
Returning to (7.20) we see that with 1% = (1/2,1)

B“q“i“k,;*sC[B”hiuk’;t"' ”hi”U‘J]! i=1!2'

Hence also
2
Bua—nk,rsC[aniu,,,am): 1, | =12
j=1

wich immediately lcads to (7.16d;), (7.16d,).
The following lemma is taken from J6].

LEMMA 7.3: Let T be the triangle as before, [ be continuous on
3T, f, = fy=0and f, & P,(v1). Then there exists a polynomial v € ,@;{T)
such that

|ivi|1,15C ”fl"L-!,1

_U=f1 O Yy
v=0 on v,

where C is a conswnt independent of f and p.
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THEOREM 7.4 : Let T be the equilateral triangle shown in figure 7.1 and f
satisfy f(A) = f(B) = f(C)=0and f, = f|, € Z,(v),i =1,2,3. Then
there exists U € P ,(T) such that U = f on 3T and

T C[‘z Onfnm,,,j]

where the constant C is independent of p and f.

Proof: Without loss of generality we can assume that f, = f; = 0.
Let f, #0, f,=0. By Lemma 7.2 we construct &, ®, and U =
FI' 2 FI™ Then Ue #,(T), U=f,onv;, i =1,2 and

(7.28) “U”],Ts C 0" fl“LQ’h'
Denote by g5 the trace of U on ;. Then we have g,(B) = g;(C) =0 and

(7.29) ollgsllin,y, = C ol fillin, o,

by applying Lemmas 7.2 and 7.1.
Because of (7.16d3) || D], s =C ol 1l ,, and hence using Lemma 7.1

we have also
(7.30) I9:lly 46 = Coll Fillys y, -

Let now analogously as before

[1] 11}
v, = PR R,

s0 that

Uye?,(T), U=gsony;, U =0onw
and
(7.31 “ U1H1,T = C_0Hg3 " 12,44 sC 0“ hi u 122, v4

Denote by gl the trace of U, on v,. Then g{'(4) = gl'/(C) = 0. Because of

(7.30), applying Lemma 7.1 and Lemma 7.2 analogously as before we
conclude that

1
192N, < C UGl o5 +ohgslin, ) = C ol Fill .
Now applying Lemma 7.3 there is U, € #)T) such-that

(7.32) AT P R A
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and

U2=9£1] on vy, Uy=0o0n v;,7v;-
Let now

V=U_ U +U,.

Then it is easy to see that Ve P (T), V=/ on vy, V=0 on
Y2, ¥3 and because of (7.28), (7.31) and (7.32) we get

Vi r=Colfikia,,

which concludes the proof of Theorem 7.4.

Let §= (x,y||x} <1, |¥| <1) be a square and v; its sides as shown in
figure 7.2

D=(-1,1) vz C=(1,)

s

)

A=(-1,-D B=(1,-)
7
Figure 7.2. — The scheme of the square.

THEOREM 7.5: Let 8 be the square shown in figure 7.2 and [ satisfy
f(A) = f(B) = f(c) = f(D) =1 and fi = flTj (= ?p("h'), i = 1, ...,4.
Then there exists U € P;(S) such that U= f on 85 and

JUl, g=C ( 5 onf,-nm,y,.)

i=

where the consiant C is independent of p and f.

Proof: Let T be triangle shown in figure 7.1 and

Q= {g,'fl|(§s'ﬂ)€T,T]<38£}

be the trapezoid shown in figure 7.3
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Y Cz(_‘z_,'\/g)

A=(0,0) B=(1,0)

Figure 7.3. — Scheme of the trapezoid.

The mapping

1.3 5
(7.33) gﬁ2+1g( y+3) n—(1+y)3‘/3

maps S onto Q. The mapping is obviously one-to-one and the Jacobian and
its inverse are bounded.
Let us first prove the theorem in the case that f; =0, = 2, 3, 4. Denote

h®) = f12e-1), 0<E<1.
Obviously f,(A) = f,(B) =0 and

Ollflum_,ﬁ] = Cullfllllv’l,'n :

Let Ue ?XT) such that U= f, on AB and U=0 on AC and
BC. By Theorem 7.4, U(&, m) exists and
181, ;< Caollfilly, 5, < C ol fills,, -

Because U € #2)(T) we have

U, m) = z A, j g/

O=k+j=p

= X “k,i(%+31—g(—y+§)) ((I+ )3‘/§)j

O=k+j=p

Ulx,y) e Z;(5)
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and
101, s=Coll fhigy, -

Because f, = f; =0 we have U(x1,y)=0, U(x,~1) = f, and using
Lemma 7.1, Lemma 7.2 we conclude by similar arguments as used in the
proof of Theorem 7.4 that

UG Dy, =< Coll fill g,
Of course U(x,1) € #,(v;) and U(x1,1) = 0. Hence with

V=Ulx, 1)y+1¥2
we see that

Vil s=CHUG Dy, <ol fillyy
and V(x,1) =U(x,1). Hence W=U-V € 2XS), W= f on 45 and
"W"Lsﬂctl“flﬂlfz,ﬂ'

The theorem is therefore proven in the case that f = 0 on three sides of §
and hence it holds also if fis general but f =0 at the vertices ABCD.

It remains to prove that in the general case there exist d e ?5(3 ) such
that & has the same traces at ABCD as f and

- Bl

(7.34) ucbul,ss-C[i onffum,wy

i=1

To this end we define (g, 1) by (7.1) and define F(x, y) by inserting
(7.33) for (& m). Then ||F{(x, + 1)]| , =Cl i, ,, and hence analog-
B £ 1

ously as above we can change Fl[f‘i(x, y) to F, so that F(x, +1) =0 and
Hﬁl H1 ¢ = Collf1lly, . Changing the role of v, and vy, we can analogously

construct F; e .@;(S ) so that
I3}, s=C ol fallyny, Fae1)=fi, Filx,-1)=0.

Hence ® = F, + F; € #2(Q) has the same traces at ABCD as fand (7.34)
holds. This completes the proof of Theorem 7.5.

Remark : Theorems 7.4, 7.5 also hold when fis not a polynomial. This is
known from the theory of Sobolev spaces. The importance of Theorems 7.4
and 7.5 lies in the fact that if f; are polynomials, then there exists a
polynomial extension.
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