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Abstract. We describe and analyze two numerical methods for a linear elliptic problem with
stochastic coefficients and homogeneous Dirichlet boundary conditions. Here the aim of the com-
putations is to approximate statistical moments of the solution, and, in particular, we give a priori
error estimates for the computation of the expected value of the solution. The first method gener-
ates independent identically distributed approximations of the solution by sampling the coefficients
of the equation and using a standard Galerkin finite element variational formulation. The Monte
Carlo method then uses these approximations to compute corresponding sample averages. The sec-
ond method is based on a finite dimensional approximation of the stochastic coefficients, turning the
original stochastic problem into a deterministic parametric elliptic problem. A Galerkin finite element
method, of either the h- or p-version, then approximates the corresponding deterministic solution,
yielding approximations of the desired statistics. We present a priori error estimates and include a
comparison of the computational work required by each numerical approximation to achieve a given
accuracy. This comparison suggests intuitive conditions for an optimal selection of the numerical
approximation.
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1. Introduction. Due to the great development in computational resources and
scientific computing techniques, more mathematical models can be solved efficiently.
Ideally, this artillery could be used to solve many classical partial differential equa-
tions, the mathematical models we shall focus on here, to high accuracy. However, in
many cases, the information available to solve a given problem is far from complete
and is in general very limited. This is the case when solving a partial differential
equation whose coefficients depend on material properties that are known to some ac-
curacy. The same may occur with its boundary conditions and even with the geometry
of its domain; see, for example, the works [5, 4]. Naturally, since the current engi-
neering trends are going toward more reliance on computational predictions, the need
for assessing the level of accuracy in the results grows accordingly. More than ever,
the goal then becomes to represent and propagate uncertainties from the available
data to the desired result through our partial differential equation. By uncertainty
we mean either intrinsic variability of physical quantities or simply lack of knowledge
about some physical behavior; cf. [38]. If variability is interpreted as randomness,
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then naturally we can apply probability theory. To be fruitful, probability theory
requires considerable empirical information about the random quantities in question,
usually in the form of probability distributions or their statistical moments. On the
other hand, if the only available information comes in the form of some bounds for
the uncertain variables, the description and analysis of uncertainty may be based on
other methods, such as convexity methods; cf. [8, 18]. This approach is closely related
to the so-called worst case scenario.

This work addresses elliptic partial differential equations with stochastic coef-
ficients, with applications to physical phenomena, e.g., random vibrations, seismic
activity, oil reservoir management, and composite materials; see [2, 17, 19, 22, 27, 28,
30, 39, 43] and the references therein. Solving a stochastic partial differential equation
entails finding the joint probability distribution of the solution, which is a hard prob-
lem. In practice we shall usually be satisfied with much less, namely, the computation
of some moments, e.g., the expected value of the solution, or some probability related
to a given event, e.g., the probability of some eventual failure; cf. [26, 34]. Although
the results presented in this paper can be generalized to linear elliptic stochastic
partial differential equations we now focus our study on the standard model prob-
lem, a second order linear elliptic equation with homogeneous Dirichlet boundary
conditions.

Let D be a convex bounded polygonal domain in R
d and (Ω,F , P ) be a complete

probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events,
and P : F → [0, 1] is a probability measure. Consider the following stochastic linear
elliptic boundary value problem: find a stochastic function, u : Ω×D → R, such that
P -a.e. in Ω, or, in other words, almost surely (a.s.), the following equation holds:

−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.
(1.1)

Here a, f : Ω × D → R are stochastic functions with continuous and bounded co-
variance functions. If we denote by B(D) the Borel σ-algebra generated by the open
subsets of D, then a, f are assumed measurable with the σ-algebra (F ⊗ B(D)). In
what follows we shall assume that a is bounded and uniformly coercive, i.e.,

∃ amin, amax ∈ (0,+∞) : P
(
ω ∈ Ω : a(ω, x) ∈ [amin, amax] ∀x ∈ D

)
= 1.(1.2)

To ensure regularity of the solution u we assume also that a has a uniformly bounded
and continuous first derivative; i.e., there exists a real deterministic constant C such
that

P
(
ω ∈ Ω : a(ω, ·) ∈ C1(D) and max

D

|∇xa(ω, ·)| < C
)

= 1(1.3)

and that the right-hand side in (1.1) satisfies

∫
Ω

∫
D

f2(ω, x)dx dP (ω) < +∞, which implies

∫
D

f2(ω, x)dx < +∞ a.s.(1.4)
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802 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Depending on the structure of the noise that drives an elliptic partial stochastic
differential equation, there are different numerical approximations. For example, when
the size of the noise is relatively small, a Neumann expansion around the mean value
of the elliptic operator in (1.1) is a popular approach. It requires only the solution
of standard deterministic partial differential equations, the number of them being
equal to the number of terms in the expansion. Equivalently, a Taylor expansion of
the solution around its mean value with respect to the noise yields the same result.
Similarly, the work [30] uses formal Taylor expansions up to second order of the
solution but does not study their convergence properties. Recently, the work [3]
proposed a perturbation method with successive approximations. It also proves that
uniform coercivity of the diffusion is sufficient for the convergence of the perturbation
method.

When only the load f is stochastic, it is also possible to derive deterministic
equations for the statistical moments of the solution. This case was analyzed in [1, 32]
and more recently in the work [40], where a new method to solve these equations with
optimal complexity is presented.

On the other hand, the works by Deb [14], Deb, Babuška, and Oden [15], Ghanem
and Red-Horse [21], and Ghanem and Spanos [22] address the general case where all
the coefficients are stochastic. Both approaches transform the original stochastic
problem into a deterministic one with a large dimensional parameter, and they differ
in the choice of the approximating functional spaces. The works [14, 15] use finite ele-
ments to approximate the noise dependence of the solution, while [21, 22] use a formal
expansion in terms of Hermite polynomials. The approximation error in the approach
[14, 15] can then be bounded in terms of deterministic quantities, as described in this
work. After finishing this paper the authors became aware of the work [9], which de-
veloped a related error analysis for elliptic stochastic differential equations. The work
[9] gives approximation error estimates for functionals of the solution, while our work
focuses on error estimates for the strong approximation of the statistical moments
of the solution. Besides, we use the Karhunen–Loève expansion and characterize the
regularity of the solution, yielding, e.g., exponential rates of convergence; cf. section
6. On the other hand, the analysis in [9] uses the regularity of the computed func-
tional together with estimates in negative spaces for the approximation error in the
solution of the stochastic partial differential equation. This negative estimate can in
principle accommodate rough solutions; however, they require H2 spatial regularity,
an assumption that is not clearly fulfilled by rough solutions.

Monte Carlo methods are both general and simple to code, and they are naturally
suited for parallelization. They generate a set of independent identically distributed
(iid) approximations of the solution by sampling the coefficients of the equation, using
a spatial discretization of the partial differential equation, e.g., by a Galerkin finite
element method. Then using these approximations we can compute corresponding
sample averages of the desired statistics. Monte Carlo methods have a rate of con-
vergence that may be considered slow, but its computational work grows only like a
polynomial with respect to the number of random variables present in the problem.
It is worth mentioning that in particular cases their convergence can be accelerated
by variance reduction techniques; see [29]. The convergence rate of the Monte Carlo
method is interpreted in the probability sense, and a practical estimate of its error
needs an a posteriori estimate of the variance of the sampled random variable, which
in turn requires an a priori bound on higher statistical moments; cf. the Berry-Essen
theorem in [16]. Besides this, if the probability density of a random variable is smooth,
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FEM FOR STOCHASTIC ELLIPTIC PDEs 803

the convergence rate of the Monte Carlo method for the approximation of its expected
value can be improved; cf. [35, 45]. Quasi-Monte Carlo methods (see [12, 41, 42])
offer a way to get a better convergence rate than the Monte Carlo method, although
this advantage seems to deteriorate in general when the number of random variables
present in the problem becomes large.

Another way to provide a notion of stochastic partial differential equations is
based on the Wick product and the Wiener chaos expansion; see [27] and [46]. This
approach yields solutions in Kondratiev spaces of stochastic distributions that are
based on a different interpretation of (1.1); the solutions proposed in [27] and [46]
are not the same as those arising from (2.1). The choice between (2.1) and [27] is a
modeling decision, based on the physical situation under study. For example, with
the Wick product we have E[a 	 u] = E[a]E[u], regardless of the correlation between
a and u, whereas this is in general not true with the usual product. A numerical ap-
proximation for Wick stochastic linear elliptic partial differential equations is studied
in [44], yielding a priori convergence rates.

This work studies the case of stochastic linear elliptic partial differential equa-
tions with random diffusion and load coefficients, stating and proving conditions for
existence and uniqueness of solutions; for example, to obtain a meaningful numerical
solution for (1.1) its diffusion coefficient should be uniformly coercive. Besides, it
compares a Monte Carlo Galerkin method with the stochastic Galerkin finite element
method introduced in [14] and introduces a related p-version, developing a priori er-
ror estimates for each case. A priori error estimates are useful to characterize the
convergence, and ultimately they provide information to compare the number of op-
erations required by numerical methods. The conclusion for now is that if the noise
is described by a small number of random parameters or if the accuracy require-
ment is sufficiently strict, then a stochastic Galerkin method is preferred; otherwise,
a Monte Carlo Galerkin method still seems to be the best choice; see section 8. It is
worth mentioning that the development of numerical methods for stochastic differen-
tial equations is still very much ongoing, and better numerical methods are expected
to appear.

2. Theoretical aspects of the continuous problem.

2.1. Notation and function spaces. Let d be a positive integer and D be
an open, connected, bounded, and convex subset of R

d with polygonal boundary
∂D. Denote the volume of D by |D| ≡

∫
D

1dx. For a nonnegative integer s and
1 ≤ p ≤ +∞, let W s,q(D) be the Sobolev space of functions having generalized
derivatives up to order s in the space Lq(D). Using the standard multi-index notation,
α = (α1, . . . , αd) is a d-tuple of nonnegative integers, and the length of α is given by

|α| =
∑d

i=1 αi. The standard Sobolev norm of v ∈ W s,q(D) will be denoted by
‖v‖W s,q(D), 1 ≤ q ≤ +∞. Whenever q = 2, we shall use the notation Hs(D) instead
of W s,2(D). As usual, the function space H1

0 (D) is the subspace of H1(D) consisting
of functions which vanish at the boundary of D in the sense of trace, equipped with
the norm ‖v‖H1

0 (D) = {
∫
D
|∇v|2 dx}1/2. Whenever s = 0 we shall keep the notation

with Lq(D) instead of W 0,q(D). For the sake of generality, sometimes we shall let H
be a Hilbert space with inner product (·, ·)

H
. In that case we shall also denote the

dual space of H, H ′, that contains linear bounded functionals, L : H → R, and is

endowed with the operator norm ‖L‖H′ = sup0 �=v∈H
L(v)
‖v‖H

.

Since stochastic functions intrinsically have different structure with respect to
ω and with respect to x, the analysis of numerical approximations requires tensor
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804 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

spaces. Let H1, H2 be Hilbert spaces. The tensor space H1 ⊗ H2 is the completion
of formal sums u(y, x) =

∑
i=1,...,n vi(y)wi(x), {vi} ⊂ H1, {wi} ⊂ H2, with respect

to the inner product (u, û)H1⊗H2
=

∑
i,j(vi, v̂j)H1

(wi, ŵj)H2
. For example, let us

consider two domains, y ∈ Γ, x ∈ D, and the tensor space L2(Γ)⊗H1(D), with tensor
inner product

(u, û)L2(Γ)⊗H1(D) =

∫
Γ

(∫
D

u(y, x)û(y, x)dx

)
dy

+

∫
Γ

(∫
D

∇xu(y, x) · ∇xû(y, x)dx

)
dy.

Thus, if u ∈ L2(Γ) ⊗ Hk(D), then u(y, ·) ∈ Hk(D) a.e. on Γ and u(·, x) ∈ L2(Γ)
a.e. on D. Moreover, we have the isomorphism L2(Γ) ⊗ Hk(D) 
 L2(Γ;Hk(D)) 

Hk(D;L2(Γ)) with the definitions

L2(Γ;Hk(D))

=

{
v : Γ ×D → R | v is strongly measurable and

∫
Γ

‖v(y, ·)‖2
Hk(D) < +∞

}
,

Hk(D;L2(Γ))

=

{
v : Γ ×D → R | v is strongly measurable and ∀|α| ≤ k ∃ ∂αv ∈ L2(Γ) ⊗ L2(D)

with

∫
Γ

∫
D

∂αv(y, x)ϕ(y, x)dxdy = (−1)|α|∫
Γ

∫
D

v(y, x)∂αϕ(y, x)dxdy ∀ϕ ∈ C∞
0 (Γ ×D)

}
.

Similar constructions can be done for the tensor product of Banach spaces, although
the norm for the tensor space used to obtain the completion of the formal sums has
to be defined explicitly on each case. Here the Banach space C(Γ;H) comprises all
continuous functions u : Γ → H with the norm ‖u‖C(Γ;H) ≡ supy∈Γ ‖u(y)‖H . Similar

definitions apply to the spaces Ck(Γ;H), k = 1, . . . ; cf. [20, p. 285].
Let Y be an R

N -valued random variable in (Ω,F , P ). If Y ∈ L1
P (Ω), we denote its

expected value by E[Y ] =
∫
Ω
Y (ω)dP (ω) =

∫
RN y dµY (y), where µY is the distribution

measure for Y , defined for the Borel sets b̃ ∈ B(RN) by µY (b̃) ≡ P (Y −1(b̃)). If µY

is absolutely continuous with respect to the Lebesgue measure, then there exists a
density function ρY : R → [0,+∞) such that E[Y ] =

∫
RN y ρY (y)dy. Analogously,

whenever Yi ∈ L2
P (Ω) for i = 1, . . . , d, the covariance matrix of Y , Cov[Y ] ∈ R

d×d, is
defined by Cov[Y ](i, j) = Cov(Yi, Yj) = E[(Yi − E[Yi])(Yj − E[Yj ])], i, j = 1, . . . , d.
Besides this, whenever u(ω, x) is a stochastic process the positive semidefinite function
Cov[u](x1, x2) = Cov[u(x1), u(x2)] = Cov[u(x2), u(x1)] is the covariance function of
the stochastic process u.

To introduce the notion of stochastic Sobolev spaces we first recall the defini-
tion of stochastic weak derivatives. Let v ∈ L2

P (Ω) ⊗ L2(D); then the α stochastic
weak derivative of v, w = ∂αv ∈ L2

P (Ω) ⊗ L2(D), satisfies
∫
D
v(ω, x)∂αφ(x)dx =

(−1)|α|
∫
D
w(ω, x)φ(x)dx∀φ ∈ C∞

0 (D) a.s.

We shall work with stochastic Sobolev spaces W̃ s,q(D) = Lq
P (Ω,W s,q(D)) con-

taining stochastic functions, v : Ω ×D → R, that are measurable with respect to the
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FEM FOR STOCHASTIC ELLIPTIC PDEs 805

product σ-algebra F ⊗ B(D) and equipped with the averaged norms ‖v‖
W̃ s,q(D)

=

(E[‖v‖qW s,q(D)])
1/q = (E[

∑
|α|≤s

∫
D
|∂αv|qdx])1/q, 1 ≤ q < +∞, and ‖v‖

W̃ s,∞(D)
=

max|α|≤s

(
ess supΩ×D |∂αv|

)
. Observe that if v ∈ W̃ s,q(D), then v(ω, ·) ∈ W s,q(D)

a.s. and ∂αv(·, x) ∈ Lq
P (Ω) a.e. on D for |α| ≤ s. Whenever q = 2, the above space

is a Hilbert space, i.e., W̃ s,2(D) = H̃s(D) 
 L2
P (Ω) ⊗Hs(D).

2.2. Existence and uniqueness for the solution of a linear stochastic
elliptic problem. Let us consider the tensor product Hilbert space H = H̃1

0 (D) 

L2

P (Ω;H1
0 (D)) endowed with the inner product (v, u)H ≡ E[

∫
D
∇v · ∇udx].

Define the bilinear form, B : H×H → R, by B(v, w) ≡ E[
∫
D
a∇v ·∇wdx]∀v, w ∈

H. The standard assumption (1.2) yields both the continuity and the coercivity of
B; i.e., |B(v, w)| ≤ amax ‖v‖H ‖w‖H ∀v, w ∈ H, and amin‖v‖2

H ≤ B(v, v)∀v ∈ H.
A direct application of the Lax–Milgram lemma (cf. [11]) implies the existence and
uniqueness for the solution to the following variational formulation: find u ∈ H such
that

B(u, v) = L(v) ∀v ∈ H.(2.1)

Here L(v) ≡ E[
∫
D
fvdx] ∀v ∈ H defines a bounded linear functional since the random

field f satisfies (1.4). Since the domain D is convex and bounded and assumptions
(1.2), (1.3) on the diffusion a hold, the theory of elliptic regularity (cf. [20]) implies
that the solution of (1.1) satisfies u(ω, ·) ∈ H2(D) ∩H1

0 (D) a.s. Moreover, standard
arguments from measure theory show that the solution to (2.1) also solves (1.1). The
formulation (2.1), together with assumption (2.1) on finite dimensional noise, gives
the basis for the stochastic Galerkin finite element method (SGFEM) introduced in
sections 5 and 6, while formulation (1.1) is the basis for the Monte Carlo Galerkin
finite element method (MCGFEM), discussed in section 4.

2.3. Continuity with respect to the coefficients a and f . Since the coeffi-
cients a and f are not known exactly, in the next proposition we consider a perturbed
weak formulation and estimate the size of the corresponding perturbation in the so-
lution. The proof uses standard estimates and is included in [6].

Proposition 2.1. Let (H, (·, ·)H) be a Hilbert space. Consider two symmetric

bilinear forms B, B̂ : H × H → R that are H-coercive and bounded; i.e., there exist
real constants 0 < amin ≤ amax such that

amin ‖v‖2
H
≤ min{B(v, v), B̂(v, v)} ∀v ∈ H(2.2)

and

max{|B(v, w)|, |B̂(v, w)|} ≤ amax ‖v‖H ‖w‖H ∀v, w ∈ H.(2.3)

Consider two bounded linear functionals, L, L̂ ∈ H ′, and let u,û ∈ H be the solutions
of the problems

B(u, v) = L(v) ∀v ∈ H,

B̂(û, v) = L̂(v) ∀v ∈ H.

If, in addition, we know that there exist Banach spaces, V1,V2, and positive constants,
C,γ′, such that u ∈ V2 ⊆ H ⊂ V1, ‖ · ‖V1 ≤ C‖ · ‖H , and

|(B̂ − B)(w, v)| ≤ γ′‖w‖V1
‖v‖V2

∀w ∈ H, v ∈ V2,(2.4)
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806 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

then

‖u− û‖H ≤ 1

amin
(‖L − L̂‖H′ + Cγ′‖u‖V2

).(2.5)

Next we consider a perturbation of (2.1). A direct application of Proposition 2.1
yields the following estimate.

Corollary 2.1. Let 1 < p < +∞ with 1/p+1/q = 1. Consider the Hilbert space

H = H̃1
0 (D) and perturbed coefficients, â, f̂ , satisfying 0 < amin ≤ â ≤ amax < ∞,

(P⊗dx) a.e. on D×Ω, f̂ ∈ L̃2(D). Let u and û solve E[
∫
D
â∇û ·∇vdx] = E[

∫
D
f̂vdx]

∀v ∈ H,E[
∫
D
a∇u · ∇vdx] = E[

∫
D
fvdx]∀v ∈ H. Besides this, assume that the

solution u belongs to the stochastic Sobolev space W̃ 1,2q(D). Then

‖u− û‖
H̃1

0 (D)
≤ 1

amin
(CD‖f̂ − f‖

L̃2(D)
+ ‖a− â‖

L̃2p(D)
‖u‖

W̃ 1,2q(D)
),

with CD > 0 being the Poincaré constant for the domain D; i.e., ‖v‖L2(D) ≤ CD

‖v‖H1
0 (D)∀v ∈ H1

0 (D).

Proof. Take V1 = H̃1
0 (D) and V2 = W̃ 1,2q(D). In order to apply (2.5) it is enough

to bound the difference of bilinear forms∣∣∣∣E [∫
D

(a− â)∇u · ∇vdx

]∣∣∣∣
≤
(
E

[∫
D

(a− â)2|∇u|2dx
])1/2(

E

[∫
D

|∇v|2dx
])1/2

≤
(
E

[∫
D

(a− â)2pdx

])1/2p(
E

[∫
D

|∇u|2qdx
])1/2q (

E

[∫
D

|∇v|2dx
])1/2

.

2.4. Karhunen–Loève expansions and finite dimensional noise. Here we
recall the Karhunen–Loève expansion, a suitable tool for the approximation of stochas-
tic processes. Consider a stochastic process a with continuous covariance function
Cov[a] : D×D → R. Besides this, let {(λn, bn)}∞n=1 denote the sequence of eigenpairs
associated with the compact self-adjoint operator that maps

f ∈ L2(D) �→
∫
D

Cov[a](x, ·)f(x)dx ∈ L2(D).

Its nonnegative eigenvalues,
√∫

D×D
(Cov[a](x1, x2))2dx1 dx2 ≥ λ1 ≥ λ2 ≥ · · · ≥ 0,

satisfy
∑+∞

n=1 λn =
∫
D
V ar[a](x)dx. The corresponding eigenfunctions are orthonor-

mal, i.e.,
∫
D
bi(x)bj(x)dx = δij . The truncated Karhunen–Loève expansion of the

stochastic process a (cf. [33]) is

aN (ω, x) = E[a](x) +

N∑
n=1

√
λnbn(x)Yn(ω),

where the real random variables, {Yn}∞n=1, are mutually uncorrelated and have mean
zero and unit variance. These random variables are uniquely determined by Yn(ω) =

1√
λn

∫
D

(a(ω, x) − E[a](x))bn(x)dx for λn > 0. Then, by Mercer’s theorem (cf.

[37, p. 245]), we have

sup
x∈D

E[(a− aN )2](x) = sup
x∈D

+∞∑
n=N+1

λnb
2
n(x) → 0 as N → ∞.
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FEM FOR STOCHASTIC ELLIPTIC PDEs 807

If, in addition,
• the images Yn(Ω), n = 1, . . . , are uniformly bounded in R,
• the eigenfunctions bn are smooth, which is the case when the covariance

function is smooth,
• and the eigenpairs have at least the decay

√
λn‖bn‖L∞(D) = O( 1

1+ns ) for
some s > 1,

then ‖a − aN‖
L̃∞(D)

→ 0. Notice that for larger values of the decay exponent s we

can also obtain the convergence of higher spatial derivatives of aN in L̃∞(D). The
last two conditions can be readily verified once the covariance function of a is known.
However, observe that it is also necessary to verify the uniform coercivity of aN , which
depends on the probability distributions of Yn, n = 1, . . . .

In many problems the source of the randomness can be approximated using just
a small number of mutually uncorrelated, sometimes mutually independent, random
variables. Take, for example, the case of a truncated Karhunen–Loève expansion
described previously.

Assumption 2.1 (finite dimensional noise). Whenever we apply some numer-
ical method to solve (1.1) we assume that the coefficients used in the computa-
tions, a, f : Ω × D → R, are finite Karhunen–Loève expansions; i.e., a(ω, x) =

E[a](x) +
∑N

n=1

√
λnbn(x)Yn(ω) and f(ω, x) = E[f ](x) +

∑N
n=1

√
λ̂nb̂n(x)Yn(ω),

where {Yn}Nn=1 are real random variables with mean value zero and unit variance,
are uncorrelated, and have images, Γn ≡ Yn(Ω), that are bounded intervals in R for
n = 1, . . . , N . Moreover, we assume that each Yn has a density function ρn : Γn → R

+

for n = 1, . . . , N .
In what follows we use the notation ρ(y) ∀y ∈ Γ for the joint probability density

of (Y1, . . . , YN ) and Γ ≡
∏N

n=1 Γn ⊂ R
N for the support of such probability density.

After making Assumption 2.1, we have by the Doob–Dynkin lemma (cf. [36]) that
u, the solution corresponding to the stochastic partial differential equation (1.1), can
be described by just a finite number of random variables, i.e., u(ω, x) = u(Y1(ω), . . . ,
YN (ω), x). The number N has to be large enough so that the approximation error is
sufficiently small. Now the goal is to approximate the function u(y, x). In addition, the
stochastic variational formulation (2.1) has a deterministic equivalent in the following:
find u ∈ L2

ρ(Γ) ⊗H1
0 (D) such that∫

Γ

ρ(y)

∫
D

a(y, x)∇u(y, x) · ∇v(y, x)dxdy

=

∫
Γ

ρ(y)

∫
D

f(y, x)v(y, x)dxdy ∀ v ∈ L2
ρ(Γ) ⊗H1

0 (D).

(2.6)

In this work the gradient notation, ∇, always means differentiation with respect to
x ∈ D only, unless otherwise stated. The corresponding strong formulation for (2.6)
is an elliptic partial differential equation with an N -dimensional parameter, i.e.,

−∇ · (a(y, x) ∇u(y, x)) = f(y, x) ∀(y, x) ∈ Γ ×D,

u(y, x) = 0 ∀(y, x) ∈ Γ × ∂D.
(2.7)

Making Assumption 2.1 is a crucial step, turning the original stochastic elliptic equa-
tion (1.1) into a deterministic parametric elliptic one and allowing the use of finite
element and finite difference techniques to approximate the solution of the resulting
deterministic problem.
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808 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Truncation of the outcomes set, Γ. For the sake of efficiency, it may be useful
to compute the solution of (2.7) in a subdomain with strictly positive probability,
Γ0 ⊂ Γ. Besides, we assume the probability density of Y to be strictly positive in Γ0.
In that case, we approximate the function

E[u(Y, ·) 1{Y ∈Γ0}] = E[u(Y, ·)|Y ∈ Γ0] P (Y ∈ Γ0)

instead of the original E[u]. If ū is an approximation of u in Γ0, then we have the
splitting

‖E[u(Y, ·)] − E[ū(Y, ·) 1{Y ∈Γ0}]‖
≤ ‖E[u(Y, ·)] − E[u(Y, ·) 1{Y ∈Γ0}]‖ + ‖E[u(Y, ·) − ū(Y, ·)|Y ∈ Γ0]‖P (Y ∈ Γ0).

(2.8)

Property 2.1 below gives a simple estimate for the first error contribution, which is
related to the truncation of Γ. The second error contribution in (2.8) is the discretiza-
tion error, and it will be analyzed for each numerical approximation separately; see
sections 4, 5, and 6. In those sections we shall simplify the notation by writing Γ = Γ0

and work with the corresponding conditional probability space.
Property 2.1. Let u be the solution of the problem (2.7); then there exists a

constant C such that∥∥E[u(Y, ·)]−E[u(Y, ·) 1{Y ∈Γ}]
∥∥
H1

0 (D)
≤ C

√
P (Y /∈ Γ0) ‖f‖L2

ρ(Γ\Γ0)⊗L2(D).(2.9)

3. The finite element spaces. In this section, we define tensor product finite
element spaces on the set Γ×D, which we will use to construct approximations of the
solution of the parametric boundary value problem (2.7), stating their approximation
properties.

3.1. Finite element spaces on the spatial set D ⊂ R
d: h-version. Con-

sider a family of finite element approximation spaces, Xd
h ⊂ H1

0 (D), consisting of
piecewise linear continuous functions on conforming triangulations (of simplices), T d

h ,
of the convex polyhedral domain, D ⊂ R

d, with a maximum mesh spacing parameter
h > 0. We will always assume that the triangulations are nondegenerate (sometimes
also called regular); cf., [11, p. 106]. Then (cf. [11, 13]) the finite element spaces Xd

h

satisfy a standard approximation estimate, namely, that for all v ∈ H2(D) ∩H1
0 (D)

min
χ∈Xd

h

‖v − χ‖H1
0 (D) ≤ C h ‖v‖H2(D),(3.1)

where C > 0 is a constant independent of v and h.

3.2. Tensor product finite element spaces on the outcomes set Γ ⊂
R

N : k-version. Let Γ =
∏N

n=1 Γn be as in subsection 2.4. Consider a parti-

tion of Γ consisting of a finite number of disjoint R
N -boxes, γ =

∏N
n=1(a

γ
n, b

γ
n),

with (aγn, b
γ
n) ⊂ Γn for n = 1, . . . , N . The mesh spacing parameters, kn > 0,

are defined by kn ≡ maxγ |bγn − aγn| for 1 ≤ n ≤ N . For every nonnegative inte-
ger multi-index q = (q1, . . . , qN ) consider the finite element approximation space of
(discontinuous) piecewise polynomials with degree at most qn on each direction yn,
Y q
k ⊂ L2(Γ). Thus, if ϕ ∈ Y q

k , its restriction to each of the partition boxes satisfies
ϕ|γ ∈ span

(∏N

n=1 y
αn
n : αn ∈ N and αn ≤ qn, n = 1, . . . , N

)
. It is easy to verify
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FEM FOR STOCHASTIC ELLIPTIC PDEs 809

that the finite element spaces Y q
k have the following approximation property: for all

v ∈ Hq+1(Γ),

min
ϕ∈Y q

k

‖v − ϕ‖L2(Γ) ≤
N∑

n=1

(
kn
2

)qn+1 ‖∂qn+1
yn

v‖L2(Γ)

(qn + 1)!
.(3.2)

3.3. Tensor product finite element spaces on Γ × D: k × h-version.
Here we will discuss some approximation properties of the following tensor product
finite element spaces:

Y q
k ⊗Xd

h ≡
{
ψ = ψ(y, x) ∈ L2(Γ ×D) : ψ ∈ span

(
ϕ(y)χ(x) : ϕ ∈ Y q

k , χ ∈ Xd
h

)}(3.3)

with Xd
h and Y q

k as in subsections 3.1 and 3.2.
For later use we recall the definition of the standard L2-projection operators

Πq
k : L2(Γ) → Y q

k by

(Πq
kw − w,ϕ)L2(Γ) = 0 ∀ϕ ∈ Y q

k , ∀w ∈ L2(Γ)(3.4)

and the H1
0 -projection operator Rh : H1

0 (D) → Xd
h by

(∇(Rhv − v),∇χ)L2(D) = 0 ∀χ ∈ Xd
h, ∀v ∈ H1

0 (D).(3.5)

Estimates (3.1) and (3.2) imply

‖v −Rhv‖H1
0 (D) ≤ C h ‖v‖H2(D),

‖w − Πq
kw‖L2(Γ) ≤

N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn

w‖L2(Γ)

(qn + 1)!

(3.6)

for all v ∈ H2(D) ∩ H1
0 (D) and w ∈ Hq+1(Γ). We now state an approximation

property for the tensor product finite element spaces defined in (3.3) which is a direct
implication of the approximation properties of the spaces Y q

k and Xd
h.

Proposition 3.1. There exists a constant C > 0 independent of h, N, q, and k
such that

inf
ψ∈Y q

k
⊗Xd

h

‖v − ψ‖L2(Γ;H1
0 (D))

≤ C

{
h ‖v‖L2(Γ;H2(D)) +

N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn

v‖L2(Γ;H1
0 (D))

(qn + 1)!

}(3.7)

for all v ∈ Cq+1(Γ;H2(D) ∩H1
0 (D)).

Proof. Since Πq
k(Rhv) ∈ Y q

k ⊗Xd
h, using (3.6) we obtain

infψ∈Y q
k
⊗Xd

h
‖v − ψ‖L2(Γ;H1

0 (D)) ≤ ‖v − Πq
k(Rhv)‖L2(Γ;H1

0 (D))

≤ ‖v −Rhv‖L2(Γ;H1
0 (D))

+ ‖Rhv − Πq
k(Rhv)‖L2(Γ;H1

0 (D))(3.8)

≤ C h ‖v‖L2(Γ;H2(D))

+ ‖Rhv − Πq
k(Rhv)‖L2(Γ;H1

0 (D)).
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810 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Applying the estimate (3.2) and using the boundedness of Rh in H1
0 (D) yield

‖Rhv − Πq
k(Rhv)‖L2(Γ;H1

0 (D)) ≤ ‖v − Πq
kv‖L2(Γ;H1

0 (D))

≤
N∑

n=1

(
kn
2

)qn+1 ‖∂qn+1
yn

v‖L2(Γ;H1
0 (D))

(qn + 1)!
.

The estimate (3.7) follows, combining (3.8) with the last estimate.

3.4. Tensor product finite element spaces on Γ×D: p × h-version. This
approximation space is in fact a particular case of the k × h-version with no k partition
of Γ, i.e., kn = |Γn|, n = 1, . . . , N . Instead, only the polynomial degree is increased.
Here the multi-index p = (p1, . . . , pN ) plays the role of the q from section 3.3, and we

use the tensor finite element space Zp =
⊗N

n=1 Z
pn
n , where the one dimensional global

polynomial subspaces, Zpn
n , are defined by Zpn

n = {v : Γn → R : v ∈ span(ys, s =
0, . . . , pn)}, n = 1, . . . , N .

4. Monte Carlo Galerkin finite element method. In this section we
describe the use of the standard Monte Carlo Galerkin finite element method
(MCGFEM) to construct approximations of the expected value of the solution.

Formulation of the MCGFEM.
• Give a number of realizations, M , a piecewise linear finite element space on D,

Xd
h, as defined in subsection 3.1.
• For each j = 1, . . . ,M , sample iid realizations of the diffusion a(ωj , ·) and the

load f(ωj , ·), based on realizations of {Yn}Nn=1, and find a corresponding approxima-
tion uh(ωj , ·) ∈ Xd

h such that

(a(ωj , ·)∇uh(ωj , ·),∇χ)L2(D) = (f(ωj , ·), χ)L2(D) ∀χ ∈ Xd
h.(4.1)

• Finally, use the sample average 1
M

∑M
j=1 uh(ωj ; ·) to approximate E[u].

Here we consider only the case where Xd
h is the same for all realizations; i.e., the

spatial triangulation is deterministic. The computational error naturally separates
into two parts:

E[u] − 1

M

M∑
j=1

uh(ωj , ·) =
(
E[u] − E[uh]

)
+

(
E[uh] − 1

M

M∑
j=1

uh(ωj , ·)
)

≡ Eh + ES .

(4.2)

The size of the spatial triangulation controls the space discretization error Eh, while
the number of realizations, M of uh, controls the statistical error ES .

To study the behavior of the statistical error, let us first consider the random
variable ‖ES‖H1

0 (D) which, due to the independence of the realizations uh(ωj , ·), j =
1, . . . ,M , satisfies the estimate

M E
[
‖ES‖2

H1
0 (D)

]
≤ ‖uh‖2

H̃1
0 (D)

≤
(

CD

amin

)2

‖f‖2

L̃2(D)
,(4.3)

and a similar result also holds in L2(D). Then, thanks to (4.3) we have that, for
either H = L2(D) or H = H1

0 (D), the statistical error ‖ES‖H tends a.s. to zero as we
increase the number of realizations; i.e., we have the following.
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FEM FOR STOCHASTIC ELLIPTIC PDEs 811

Proposition 4.1. Suppose that there exists a constant C > 0 independent of M
and h such that the statistical error in H norm satisfies

M E[‖ES‖2
H ] ≤ C ∀M,h.(4.4)

Then, taking the number of realizations, Mk, increasingly from the set {2k : k ∈ N},
we have, for any α ∈ (0, 1/2) and any choice of mesh size h, limMk→∞ Mk

α‖ES‖H =
0 a.s.

Proof. Let ε > 0. Then (4.4) and Markov’s inequality give

P ((Mk)
α‖ES‖H > ε) ≤ E[(Mk)

2α‖ES‖2
H ]

ε2
≤ C

ε2(Mk)1−2α
.

Thus, for α ∈ (0, 1/2) we have

∞∑
k=1

P (Mα
k ‖ES‖H > ε) ≤ C

ε2

∞∑
k=1

1

M1−2α
k

≤ C

ε2

∞∑
k=1

1

(21−2α)k
< ∞,

which, together with the Borel–Cantelli lemma, finishes the proof.
Under the same assumptions as in Proposition 4.1 we have that for any given

ε > 0 there exists a constant C > 0 independent of ε,M , and h such that

P

(
‖ES‖H >

ε√
M

)
≤ C

ε2
.(4.5)

Thus, within a given confidence level we have the usual convergence rate for the
Monte Carlo method, which is independent of the mesh size h. Next we present error
estimates for the space discretization error, namely, we have the following.

Proposition 4.2 (spatial discretization error estimates). There holds

h‖u− uh‖H1
0 (D) + ‖u− uh‖L2(D) ≤ C h2‖f‖L2(D) a.s.,

h‖E[u] − E[uh]‖H1
0 (D) + ‖E[u] − E[uh]‖L2(D) ≤ Ch2E[‖f‖2

L2(D)]
1/2.

The results from Proposition 4.2 and estimate (4.5) will be used in section 8 to
compare the MCGFEM with other discretizations for (1.1).

5. Stochastic Galerkin finite element method: k × h-version. This sec-
tion defines and analyzes the k × h-version of the stochastic Galerkin finite element
method (k × h-SGFEM) which, via a Galerkin variational formulation, yields approx-
imations, ukh ∈ Y q

k ⊗Xd
h, of the solution u of the parametric elliptic boundary value

problem (2.7).
Formulation of the k × h-SGFEM. Denote by q = (q1, . . . , qN ) ∈ N

N a multi-
index, and let Γ be a bounded box in R

N . The k × h-SGFEM approximation is the
tensor product, ukh ∈ Y q

k ⊗Xd
h, such that

(ukh, ψ)E ≡
∫

Γ

ρ
(
a∇ukh,∇ψ

)
L2(D)

dy =

∫
Γ

ρ
(
f, ψ

)
L2(D)

dy ∀ ψ ∈ Y q
k ⊗Xd

h.

(5.1)

Recall that ρ : Γ → (0,+∞) is the density function of the vector-valued random
variable Y : Ω → Γ ⊂ R

N . Hence, the assumption (1.2) on the random function
a(ω, x) ≡ a(Y (ω), x) reads

a(y, x) ∈ [amin, amax] ∀(y, x) ∈ Γ ×D.(5.2)
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812 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Although the analysis can be generalized [6], we now focus on the practical case
where both a and f are truncated Karhunen–Loève expansions. Later, section 7
discusses how to compute efficiently ukh, the solution of (5.1), by a double orthogonal
polynomials technique. By Lemma 4.1 in [31], the solution u of (2.7) satisfies u ∈
C∞(Γ;H2(D) ∩H1

0 (D)). Use (5.2) and (2.7) to obtain

‖u(y, ·)‖H1
0 (D) ≤ CD

amin
‖f(y, ·)‖L2(D) ∀y ∈ Γ,(5.3)

where CD is the constant of the Poincaré–Friedrichs inequality on D. Also, elliptic
regularity yields

‖u(y, ·)‖H2(D) ≤ C0,B ‖f(y, ·)‖L2(D) ∀y ∈ Γ,(5.4)

where C0,B is a constant which depends on D and ‖a‖L∞(Γ;W 1,∞(D)). Finally, take
derivatives with respect to yn in (2.7), proceed as in the derivation of (5.3), and follow
an inductive argument arriving at

‖∂qn+1
yn

u(y, ·)‖H1
0 (D)

(qn + 1)!
≤ (rn)qn

CD

amin

(
‖∂ynf(y, ·)‖L2(D) + rn‖f(y, ·)‖L2(D)

)
, qn ≥ 0,

(5.5)

with rn ≡
√
λn‖ bn

a ‖L∞(Γ×D), and n = 1, . . . , N . As a consequence of (3.7), (5.4), and
(5.5) we have an a priori error estimate for the k × h-SGFEM in the energy norm.

Proposition 5.1. Let u be the solution of the problem (2.7) and ukh ∈ Y q
k ⊗Xd

h

be the k × h-SGFEM approximations of u defined in (5.1). If ρ ∈ L∞(Γ) and f �= 0,
then

‖u− ukh‖E√
‖a ρ‖L∞(Γ×D)‖f‖L2(Γ;L2(D))

≤ Ch +
CD

amin

N∑
n=1

kn
2

(
knrn

2

)qn (‖∂yn
f‖L2(Γ;L2(D))

‖f‖L2(Γ;L2(D))
+ rn

)
,

(5.6)

where the constant C depends on D and a and is independent of q, k, h, and u.
The next step is to use Proposition 5.1 together with a duality technique to

estimate the H1
0 (D) and L2(D) errors in the approximation of the expected value of

u(Y, ·).
Theorem 5.1. Let u be the solution of the problem (2.7) and ukh ∈ Y q

k ⊗Xd
h

be the k × h-SGFEM approximations of u defined in (5.1). If ρ ∈ L∞(Γ), then for
� = 0, 1 we have

∥∥E[u(Y, ·)] − E[ukh(Y, ·)]
∥∥
H�(D)

‖a ρ‖L∞(Γ×D)
≤ C

(
h2−� +

N∑
n=1

(
kn
2

)2−�(
knrn

2

)(2−�)qn
)
.

(5.7)

The constant C depends on D, f , and a, and it is independent of k, q, and h.
Proof. The case � = 1 follows directly from Proposition 5.1, so we now prove the

case � = 0. Denote e ≡ u− ukh and use the auxiliary function û that solves

−∇x·(a(y, ·) ∇û(y, ·)) = E[e](·) in D,

û(y, ·) = 0 on ∂D.
(5.8)
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FEM FOR STOCHASTIC ELLIPTIC PDEs 813

Then (5.4) reads

‖û(y, ·)‖H2(D) ≤ C0,B ‖E[e]‖L2(D) ∀y ∈ Γ,(5.9)

and, since E[e] is independent of y, the estimate (5.5) for the problem (5.8) reads

‖∂qn+1
yn

û(y, ·)‖H1
0 (D)

(qn + 1)!
≤ (rn)qn+1 CD

amin
‖E[e]‖L2(D) ∀y ∈ Γ.(5.10)

Now use Galerkin orthogonality, together with (5.8), to obtain∫
Γ

ρ (E[e], e)L2(D) dy =

∫
Γ

ρ
(
a∇e,∇(û− ψ)

)
L2(D)

dy ∀ψ ∈ Y q
k ⊗Xd

h,

which yields, by the Cauchy–Schwarz inequality,

‖E[e]‖2
L2(D) ≤ B̃1 B̃2,(5.11)

with

B̃1 ≡
(∫

Γ

ρ ‖
√
a ∇e‖2

L2(D) dy

) 1
2

and

B̃2 ≡ inf
ψ∈Y q

k
⊗Xd

h

(∫
Γ

ρ ‖
√
a ∇(û− ψ)‖2

L2(D) dy

) 1
2

.

Next observe that B̃1 can be bounded using (5.6). Finally, use (3.7), (5.9), and

(5.10) to bound B̃2 as follows:

(5.12)

B̃2 ≤ C ‖a ρ‖
1
2

L∞(Γ×D)

{
h ‖û‖L2(Γ;H2(D)) +

N∑
n=1

(
kn
2

)qn+1 ‖∂qn+1
yn

û‖L2(Γ;H1
0 (D))

(qn + 1)!

}

≤ C ‖a ρ‖
1
2

L∞(Γ;L∞(D))

(
h +

CD

amin

N∑
n=1

(
rn kn

2

)qn+1
)

‖E[e]‖L2(D).

Combining (5.11), (5.6), and (5.12), the estimate (5.7) follows.
The estimates given in Proposition 5.1 and Theorem 5.1 give the optimal order

of convergence with respect to k but are not optimal with respect to q. They can
be improved by the analysis given in section 6, yielding exponential convergence with
respect to q without the need to decrease k.

6. Stochastic Galerkin finite element method: p × h-version. The goal
of this section is to analyze the p × h-version of the SGFEM method, which does
not refine the set Γ. This method yields an exponential rate of convergence with
respect to p, the degree of the polynomials used for approximation; cf. Theorem 6.2.
The application of the p-version in the y-direction is motivated by the fact that u is
analytic with respect to y ∈ Γ; cf. Lemma 6.1. The basic assumption for this section
is the following.
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814 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Assumption 6.1. Let Γ̂n ≡
∏

1≤j≤N,j �=n Γj , and let ŷn be an arbitrary element of

Γ̂n. Then for each ŷn ∈ Γ̂n let ãn(ŷn) ≡ minx∈D{E[a](x)+
∑

1≤j≤N,j �=n

√
λjbj(x)yj},

and assume a slightly stronger uniform coercivity requirement; i.e., there exists a
constant ν > 0, independent of N , such that

ãn(ŷn) −
√
λn‖bn‖L∞(D) max

y∈Γn

|y| ≥ ν > 0 ∀ŷn ∈ Γ̂n.

Observe that with the above construction we have 0 < ν ≤ amin.
p × h-version of the SGFEM method. The p × h-version SGFEM approximation

is the tensor product up
h ∈ Zp ⊗Xd

h (cf. section 3.4) that satisfies

(up
h, χ)E ≡

∫
Γ

ρ
(
a∇up

h,∇χ
)
L2(D)

dy =

∫
Γ

ρ
(
f, χ

)
L2(D)

dy ∀ χ ∈ Zp ⊗Xd
h.(6.1)

6.1. Error estimates. A first step in the analysis of the p × h-version is to
study the energy error, i.e., to consider

‖u− up
h‖E ≤

√
‖ρa‖L∞(Γ×D) min

v∈Zp⊗Xd
h

‖u− v‖L2(Γ)⊗H1
0 (D)

≤
√
‖ρa‖L∞(Γ×D)

{
min

v∈Zp⊗H1
0 (D)

‖u− v‖L2(Γ)⊗H1
0 (D)

+ min
v∈L2(Γ)⊗Xd

h

‖u− v‖L2(Γ)⊗H1
0 (D)

}
.

This bound splits the error into an L2(Γ) approximation error and a standard H1
0 (D)

FEM approximation error. The rest of this section studies the first one, since for
the second we can apply the results from Proposition 3.1 together with a density
argument. The minimizer

‖u− up‖L2(Γ)⊗H1
0 (D) = min

v∈Zp⊗H1
0 (D)

‖u− v‖L2(Γ)⊗H1
0 (D)

is the projection up = (Π1 . . .ΠN )u with Πn : L2(Γ) ⊗ H1
0 (D) → L2(Γ) ⊗ H1

0 (D)
being the natural extension of the L2 projection Π̄n : L2(Γn) → Zpn

n , so the difference
u − up splits into u − up = (1 − Π1)u + · · · + (Π1 . . .ΠN−1)(1 − ΠN )u. In addition,
the boundedness of the projections Πn, n = 1, . . . , N , yields

‖u− up‖L2(Γ)⊗H1
0 (D) ≤

N∑
n=1

‖(1 − Πn)u‖L2(Γ)⊗H1
0 (D).(6.2)

Without loss of generality we now estimate the first term on the right-hand side of
(6.2), since the other terms have a completely similar behavior. Moreover, since

‖(1 − Π1)u‖2
L2(Γ)⊗H1

0 (D) =

∫
Γ̂1

(∫
Γ1

‖(1 − Π1)u(y1, ŷ1, ·)‖2
H1

0 (D)dy1

)
dŷ1

it is enough to estimate

(E1)
2(ŷ1) ≡

∫
Γ1

‖(1 − Π1)u(y1, ŷ1, ·)‖2
H1

0 (D)dy1,(6.3)
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FEM FOR STOCHASTIC ELLIPTIC PDEs 815

and thus our analysis requires only one dimensional arguments in the y-direction. Let
Γ1 = (ymin, ymax), and consider the map Ψ : [−1, 1] → H1

0 (D) defined by

Ψ(t) = u(y1(t), ŷ1, ·) ∈ H1
0 (D)

with the affine transformation, y1 : [−1, 1] → Γ1, y1(t) ≡
(
ymax+ymin

2

)
+
(
ymax−ymin

2

)
t.

In the upcoming estimate of the quantities ‖dn‖H1
0 (D), to be proved in Lemma 6.2,

we need to consider a continuation of Ψ to the complex plane, namely, the following.
Lemma 6.1 (complex continuation). The function Ψ : [−1, 1] → H1

0 (D) can be
analytically extended to the complex domain.

Proof. Let t0 ∈ (−1, 1). We shall prove that the real function Ψ can be represented
as a power series for |t− t0| < rt0 for some rt0 > 0. Since Ψ depends linearly on f , let
us assume that f(y, x) = f(x) only, without loss of generality. Let y(t) = (y1(t), ŷ1),
and consider the formal series

uF (t) ≡
+∞∑
j=0

(
|Γ1|(t− t0)

2

)j

uj ,

with uj ∈ H1
0 (D) satisfying∫

D

a(y(t0), ·)∇u0 · ∇v =

∫
D

fv ∀v ∈ H1
0 (D)(6.4)

and, for j ≥ 0,∫
D

a(y(t0), ·)∇uj+1 · ∇v = −
∫
D

√
λ1b1∇uj · ∇v ∀v ∈ H1

0 (D).(6.5)

This construction implies ‖uj‖H1
0 (D) ≤ (

√
λ1‖ b1

a(y(t0),·)‖L∞(D))
j CD‖f‖L2(D)

amin
, j ≥ 1, and

then

‖uF ‖H1
0 (D) ≤

CD‖f‖L2(D)

amin

1

1 − q
< ∞

for q ≡ |t−t0||Γ1|
√
λ1

2 ‖ b1
a(y(t0),·)‖L∞(D) < 1. Thus, for any t0 ∈ (−1, 1) and |t − t0| <

rt0 ≡ 2

|Γ1|
√
λ1

∥∥ b1
a(y(t0),·)

∥∥
L∞(D)

, the function uF can be represented as a power series

in t − t0. At the same time, we have the equality uF (t) = Ψ(t) for t ∈ (−1, 1) since
both functions solve the linear elliptic equation

−∇ · (a(y(t), x) ∇u(y(t), x)) = f(x) ∀x ∈ D,
u(y(t), x) = 0 ∀x ∈ ∂D,

which has a unique solution. Then uF is the analytic continuation of Ψ, and the proof
is complete.

Remark 6.1. Consider the natural extension of the real variable t to the complex
variable η. Observe that Ψ(η) from Lemma 6.1 solves

−∇ · (a(y(η), x) ∇Ψ(η, x)) = f(x) ∀x ∈ D,

Ψ(η, x) = 0 ∀x ∈ ∂D.
(6.6)D
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816 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Following [24], we use the Legendre polynomials to prove approximation estimates
for the p × h-version of the SGFEM. Since the Legendre polynomials

pn(t) ≡ 1

2nn!

dn

dtn
((t2 − 1)n), n = 0, 1, . . . ,

are orthogonal with respect to the L2(−1, 1) inner product we have the error
representation

(E1)
2(ŷ1) =

|Γ1|
2

+∞∑
n=p1+1

2

2n + 1
‖dn‖2

H1
0 (D)(6.7)

with the corresponding Fourier coefficients

dn ≡ 2n + 1

2

∫ 1

−1

Ψ(t)pn(t)dt ∈ H1
0 (D).

Therefore, to obtain an estimate for E1 we shall study the convergence of the tail
series in (6.7).

Notation 6.1. For each ŷ1 ∈ Γ̂1, consider the natural extension of the variable
t to the complex η and introduce the real function, A : C → R:

A(η) ≡ min
x∈D

Re{a(y1(η), ŷ1, x)}

= min
x∈D

[a(0, ŷ1, x) + y1(Re{η})
√

λ1b1(x)],

with Re{η} being the real part of η ∈ C. Whenever A(η) �= 0, the extended function
Ψ, the solution of (6.6), satisfies the bound

‖Ψ(η)‖H1
0 (D) ≤ CD

‖f(y1(η), ŷ1, ·)‖L2(D)

A(η)
,(6.8)

with CD being the Poincaré constant for the domain D. Besides this, observe that

A(η) ≥ ã1(ŷ1) − |y1(Re{η})|
√

λ1‖b1‖L∞(D).(6.9)

We are now ready to estimate the Fourier coefficients in (6.7).
Lemma 6.2. Let τ ∈ (0, 1). Under Assumption 6.1 there exists a positive constant

θf (ŷ1, τ) > 0 such that

‖dn‖H1
0 (D) ≤

CD θf (2n + 1)

τ ν 2n

∫ 1

−1

(
1 − t2

t + 1 + δ

)n

dt,

with 0 < δ = 2(1−τ)ν

|Γ1|
√
λ1‖b1‖L∞(D)

.

Proof. Consider

dn =
2n + 1

2

∫ 1

−1

Ψ(t)pn(t)dt =
(2n + 1)(−1)n

n! 2n+1

∫ 1

−1

dn

dtn
Ψ(t)(1 − t2)ndt.

Use the analytic continuation of the real function Ψ to the complex domain as in
Lemma 6.1. The application of Cauchy’s formula gives

dn

dtn
Ψ(t) =

n!
(
− 1

)n
2πi

∫
γt

Ψ(η)

(η − t)n+1
dη,
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FEM FOR STOCHASTIC ELLIPTIC PDEs 817

where γt is a positively oriented closed circumference with the center at the real point
t ∈ (−1, 1), with radius R(t), and such that all singularities from Ψ are exterior to γt.
Estimate (6.8) implies∥∥∥∥ dn

dtn
Ψ(t)

∥∥∥∥
H1

0 (D)

≤ CD n!

2π

∫
γt

‖f(y1(η), ŷ1, ·)‖L2(D)

A(η)|η − t|n+1
|dη|

≤ CD n!

2π

(
sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

)∫
γt

|dη|
A(η)|η − t|n+1

(6.10)

≤ CD n!

(R(t))n

(
sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D)

)
sup
η∈γt

1

A(η)
.

Let

θf ≡ sup
t∈[−1,1]

sup
η∈γt

‖f(y1(η), ŷ1, ·)‖L2(D);

then estimate (6.10) implies

‖dn‖H1
0 (D) ≤

(2n + 1)CDθf
2n+1

∫ 1

−1

(
1

infη∈γt
A(η)

)(
1 − t2

R(t)

)n

dt.(6.11)

Let τ ∈ (0, 1). We want to choose R(t) such that

inf
t∈[−1,1]

inf
η∈γt

A(η) ≥ τν.(6.12)

Since Assumption 6.1 holds, then (6.12) is satisfied taking R(t) = 1 − |t| + δ, with

δ = 2(1−τ)ν

|Γ1|
√
λ1‖b1‖L∞(D)

. Finally, the proof concludes by combining (6.11)–(6.12) and the

definition of R(t).
Now we use a result from [24], namely, that we have the following.
Lemma 6.3 (integral estimate). Let ξ < −1, and define

r ≡ 1

|ξ| +
√
ξ2 − 1

, 0 < r < 1.

Then there holds

(−1)n
∫ 1

−1

(
t2 − 1

t + ξ

)n

dt = (2r)n2n+1 n!

(2n + 1)!!
Φn,0(r

2),

where Φn,0(r
2) is the Gauss hypergeometric function. Moreover, we have

Φn,0(r
2) =

√
1 − r2 + O

(
1

n1/3

)
uniformly with respect to 0 < r < 1.

Finally, we can state the estimate for the size of the series in (6.7).
Lemma 6.4. Let τ ∈ (0, 1). Under Assumption 6.1 there exists a positive constant

θf > 0 such that

(E1)(ŷ1) ≤
CDθf

√
|Γ1|

τ ã1

(√
1 − r2 + O

(
1

(p1)1/3

))√
π

rp1+1

√
1 − r2

,
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818 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

with r ≡ 1

|ξ|+
√

ξ2−1
, 0 < r < 1, and ξ < −(1 + 2(1−τ)ν

|Γ1|
√
λ1‖b1‖L∞(D)

).

Proof. Use Lemmas 6.2 and 6.3, together with the asymptotic equivalence (2n)!!
(2n−1)!!

∼
√

πn
2 , n → ∞, yielding

‖dn‖H1
0 (D) ≤

2CDθf
τ ã1

√
πn

2

(√
1 − r2 + O

(
1

n1/3

))
rn.

Then use the result to estimate the tail of the series:

(E1)
2(ŷ1) =

|Γ1|
2

+∞∑
n=p1+1

2

2n + 1
‖dn‖2

H1
0 (D).

The main result of this section, namely the exponential convergence with respect
to the multi-index p as in [24], follows from the above lemmas; i.e., we have the
following.

Theorem 6.2. Let τ ∈ (0, 1) and u be the solution of (2.6), u ∈ L2(Γ)⊗H1
0 (D),

which is analytic with respect to y, onto the subspace Zp⊗H1
0 (D). Under Assumption

6.1 there exist positive constants, 0 < C,Cf , such that

Ep ≡ min
v∈Zp⊗H1

0 (D)
‖u− v‖L2(Γ)⊗H1

0 (D)

≤ CDCf

τν

√
π|Γ|

N∑
n=1

(
1 +

1√
1 − r2

n

O
(

1

(pn)1/3

))
(rn)pn+1,

(6.13)

with 0 < rn ≡ 1

|ξn|+
√

ξ2
n−1

< 1, and ξn < −(1 + 2(1−τ)ν

|Γn|
√
λn‖bn‖L∞(D)

) for n = 1, . . . , N .

Similarly, as in the k × h-version (cf. (5.7)), the p-version has a convergence
result for the approximation to the expected value of the solution.

Theorem 6.3. With the same assumptions as in Theorem 6.2 and for � = 0, 1,
we have

‖E[u− up
h]‖H�(D) ≤ C

(
h2−� +

1

τ

N∑
n=1

(rn)(2−�)(pn+1)

)
,

with 0 < rn < 1 as in Theorem 6.2 and C > 0 independent of h, pn, and rn.
The proof of the previous theorem uses Theorem 6.2 and is completely similar to

the proof of Theorem 5.1.
Remark 6.2. Whenever the coefficients a and f are independent the constants

θf from Lemma 6.2, Cf from Theorem 6.2, and C from Theorem 6.3 do not depend
on N .

7. Double orthogonal polynomials. Here we explain the idea of double or-
thogonal polynomials, used by various authors in different contexts; see, e.g., [47] to
compute efficiently the solution of the k × h-version and the p × h-version studied
in sections 5 and 6, respectively. The idea is to use a special basis to decouple the
system in the y-direction, yielding just a number of uncoupled systems, each one with
the size and structure of one Monte Carlo realization of (4.1). The double orthogonal
polynomials are able to perform the decoupling whenever the random variables in the
Karhunen–Loève expansion of a, Yn, n = 1, . . . , N , are independent.
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Without loss of generality we focus on the p-version, i.e., find up
h ∈ Zp ⊗Xd

h such
that ∫

Γ

ρ(y)(a(y, ·)∇up
h(y, ·),∇v(y, ·))L2(D)dy

=

∫
Γ

ρ(y)(f(y, ·), v(y, ·))L2(D)dy ∀v ∈ Zp ⊗Xd
h.

(7.1)

Let {ψj(y)} be a basis of the subspace Zp ⊂ L2(Γ) and {ϕi(x)} be a basis of the
subspace Xd

h ⊂ H1
0 (D). Write the approximate solution as

up
h(y, x) =

∑
j,i

uijψj(y)ϕi(x)(7.2)

and use test functions v(y, x) = ψk(y)ϕ�(x) to find the coefficients uij . Then (7.1)
gives ∑

j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)(a(y, ·)∇ϕi,∇ϕ�)L2(D)dy

)
uij

=

∫
Γ

ρ(y)ψk(y)(f(y, ·), ϕ�)L2(D)dy ∀k, �,

which can be rewritten as∑
j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy

)
uij =

∫
Γ

ρ(y)ψk(y)f�(y)dy ∀k, �,

with Ki,�(y) ≡ (a(y, ·)∇ϕi,∇ϕ�)L2(D) and f�(y) ≡ (f(y, ·), ϕ�)L2(D). If the diffu-
sion coefficient, a, is a truncated Karhunen–Loève expansion, a(y, x) = E[a](x) +∑N

n=1 bn(x)yn, and by the independence of the Yn, n = 1, . . . , N , we have a corre-
sponding “Karhunen–Loève” expression for the stiffness matrix Ki,�(y) ≡

∫
D

(E[a](x)+∑N
n=1 bn(x)yn)∇ϕi(x) · ∇ϕ�(x)dx = K0

i,� +
∑N

n=1 ynK
n
i,� with deterministic coeffi-

cients K0
i,� ≡ (E[a]∇ϕi,∇ϕ�)L2(D) and Kn

i,� ≡ (bn∇ϕi,∇ϕ�)L2(D). By the same
token we have∫

Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy = K0
i,�

∫
Γ

ρ(y)ψk(y)ψj(y)dy

+

N∑
n=1

Kn
i,�

∫
Γ

ynρ(y)ψk(y)ψj(y)dy.

Since ψk ∈ Zp, with multi-index p = (p1, . . . , pN ), it is enough to take it as the

product ψk(y) =
∏N

r=1 ψkr(yr), where ψkr: Γr → R is a basis function of the subspace

Zpr = span[1, y, . . . , ypr ] = span[ψhr : h = 1, . . . , pr + 1].

Keeping this choice of ψk in mind,∫
Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy = K0
i,�

∫
Γ

N∏
m=1

ρm(ym)ψkm(ym)ψjm(ym)dy

+
N∑

n=1

Kn
i,�

∫
Γ

yn

N∏
m=1

ρm(ym)ψkm(ym)ψjm(ym)dy.
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Now, for every set Γn, n = 1, . . . , N, choose the polynomials, ψj(y) =
∏N

n=1 ψjn(yn),
to be biorthogonal; i.e., for n = 1, . . . , N they must satisfy∫

Γn

ρn(z)ψkn(z)ψjn(z)dz = δkj ,∫
Γn

zρn(z)ψkn(z)ψjn(z)dz = cknδkj .

(7.3)

To find the polynomials ψk we have to solve N eigenproblems, each of them with size
(1 + pn). The computational work required by these eigenproblems is negligible with
respect to the one required to solve for uij ; cf. [23, section 8.7.2]. The orthogonal-
ity properties (7.3) for ψk imply the decoupling

∫
Γ
ρψkψjdy = δkj ,

∫
Γ
ynρψkψjdy =

cknδkj . By means of this decoupling we now conclude that∑
j,i

(∫
Γ

ρ(y)ψk(y)ψj(y)Ki,�(y)dy

)

= K0
i,�

∫
Γ

ρ(y)ψk(y)ψj(y)dy +

N∑
n=1

Kn
i,�

∫
Γ

ynρ(y)ψk(y)ψj(y)dy

=

(
K0

i,� +

N∑
n=1

ckn Kn
i,�

)
δkj .

The structure of the linear system that determines uij now becomes block diago-
nal, with each block being coercive and with the sparsity structure identical to one
deterministic FEM stiffness matrix, i.e.,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
K0 +

N∑
n=1

c1n Kn

)
0 . . . 0

0

(
K0 +

N∑
n=1

c2n Kn

)
. . . 0

...
. . .

...

0 . . . 0

(
K0 +

N∑
n=1

cNn Kn

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Observe that as a consequence of the uniform coercivity assumption, each of the diag-
onal blocks in the system above is symmetric and strictly positive definite. The con-
clusion is that the computational work to find the coefficients uij in (7.2) is the same

as the one needed to compute
∏N

i=1(1 + pi) Monte Carlo realizations of uh defined in
(4.1), but the accuracies of these methods may differ. Section 8 studies this issue.

8. Asymptotical efficiency comparisons. In this section we compare
the asymptotical numerical complexity for the Monte Carlo Galerkin finite element
method (cf. section 4) with the stochastic Galerkin finite element method introduced
in sections 5 and 6. The quantity of interest, i.e., the goal of the computation, is
the expected value of the solution, E[u], and its approximation is studied in both
the L2(D) and the H1

0 (D) sense. In all the cases, the spatial discretization is done
by piecewise linear finite elements on globally quasi-uniform meshes. For the k × h-
SGFEM the Γ partitions are also assumed to be globally quasi-uniform. Besides this,
the diffusion function a is assumed to be a truncated Karhunen–Loève expansion with
independent random variables Yn, n = 1, . . . , N .
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8.1. MCGFEM versus k × h-SGFEM. Here we consider the computational
work to achieve a given accuracy bounded by a positive constant TOL for both the
MCGFEM and the k × h-SGFEM methods. This optimal computational work in-
dicates under which circumstances one method may be best suited. When using the
MCGFEM method to approximate the solution of (1.1) in H1

0 (D) the error becomes,
applying Proposition 4.2 together with (4.5), that given a confidence level, 0 < c0 < 1,
there exists a constant C > 0 depending only on c0 such that

P

(∥∥∥∥∥E[u] − 1

M

M∑
j=1

uh(·;ωj)

∥∥∥∥∥
H1

0 (D)

≤ C

(
h +

1√
M

))
≥ c0.(8.1)

Then in the sense of (8.1) we write EMCGFEM = O(h) + O(1/
√
M). The correspond-

ing computational work for the MCGFEM method is WorkMCGFEM = O((1/hd)r +
1/hd)M, where the parameter 1 ≤ r ≤ 3 relates to the computational effort devoted
to solve one linear system with n unknowns, O(nr). From now on we continue the
discussion with the optimal r = 1 that can be achieved by means of the multigrid
method; cf. [10]. Thus, choosing h and M to minimize the computational work for a
given desired level of accuracy TOL > 0 yields the optimal work

Work∗MCGFEM = O(TOL−(2+d)).(8.2)

On the other hand, if we apply a k × h-SGFEM with piecewise polynomials of
order q in the y-direction, the computational error in H1

0 (D) norm is (cf. Theorem 5.1)

ESGFEM = O(h) + O(kq+1),

and the corresponding computational work for the k × h-version is

WorkSGFEM = O(h−d(1 + q)Nk−N ).

Here N is the number of terms in the truncated Karhunen–Loève expansion of the
coefficients a and f and k is the discretization parameter in the y-direction. Similarly
as before, we can compute the optimal work for the k × h-SGFEM method, yielding

Work∗SGFEM = O((1 + q)NTOL− N
q+1 TOL−d).

Therefore, a k × h-version SGFEM is likely to be preferred whenever TOL is suf-
ficiently small and N/2 < 1 + q; i.e., if the number of terms in the Karhunen–
Loève expansion of a is large, then the degree of approximation in the y-direction,
q, has to become correspondingly large. We summarize the comparison results in
Table 1, where we also include corresponding results from the p × h-version, to be
derived in subsection 8.2. Similarly, if we are interested in controlling the difference
‖E[u] − E[uh]‖L2(D), the application of (4.2) and Proposition 4.2 for the MCGFEM
method and Theorem 5.1 on the convergence of the k × h-SGFEM method imply the
results shown in Table 2. In this case k × h-SGFEM is likely to be preferred when-
ever N/4 < (q+1) and TOL is sufficiently small. In addition, the comparison tells us
that to be able to be competitive with the Monte Carlo method when the number of
relevant terms in the Karhunen–Loève expansion is not so small, an optimal method
should have a high order of approximation and should avoid as much as possible the
coupling between the different components of the numerical solution to preserve com-
putational efficiency. The approach proposed by Ghanem and Spanos [22] based on
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822 IVO BABUŠKA, RAÚL TEMPONE, AND GEORGIOS E. ZOURARIS

Table 1

Approximation of the function E[u] in H1
0 (D). Asymptotical numerical complexity for the

MCGFEM and SGFEM methods.

MCGFEM k × h-version SGFEM p × h-version SGFEM

Work M/hd (1+q)N

hdkN
(1+p)N

hd

H1
0 (D) Error h + 1√

M
h + kq+1 h + r(p+1)

H1
0 (D) Work∗ TOL−(2+d) TOL

− N
q+1 TOL−d (logr(TOL))NTOL−d

Table 2

Approximation of the function E[u] in L2(D). Asymptotical numerical complexity for the
MCGFEM and SGFEM methods.

MCGFEM k × h-version SGFEM p × h-version SGFEM

Work M/hd (1+q)N

hdkN
(1+p)N

hd

L2(D) Error h2 + 1√
M

h2 + k2(q+1) h2 + r2(p+1)

L2(D) Work∗ TOL−(2+d/2) (TOL)
− N

2(q+1) TOL−d/2 (logr(TOL))NTOL−d/2

orthogonal polynomials has, whenever the approximate diffusion satisfies (1.2), a high
order of approximation but introduces coupling between the different components of
the numerical solution. The uncoupling can be achieved for linear equations using
double orthogonal polynomials; see the description in section 7. With this motiva-
tion, section 6 studies the convergence of the p × h-SGFEM.

8.2. MCGFEM versus p × h-SGFEM. Here we consider the computational
work to achieve a given accuracy for both the p × h-version of SGFEM defined in
(6.1) and the MCGFEM method for the approximation of E[u] defined in section 4;
i.e., we are interested in controlling the difference ‖E[u] − E[up

h]‖L2(D) or ‖E[u] −
1
M

∑M
j=1 uh(·;ωj)‖L2(D), respectively. This computational work indicates under which

circumstances one method may be better suited than the other. Besides this, let us
assume that we use in our computations a piecewise linear FEM space in D. When
using the MCGFEM method to approximate the expected value of the solution of
(1.1), we have the optimal work required to achieve a given desired level of accuracy
TOL > 0 (cf. (8.2)):

Work∗MCGFEM = O(1/TOL2+ d
2 ).

On the other hand, if we apply a p × h-version of the SGFEM, with pi = p, i =
1, . . . , N , the computational error is (cf. Theorem 6.3)

ESGFEM = O(h2) + O(r2(p+1)), 0 < r < 1,

and the corresponding computational work is (cf. section 7)

WorkSGFEM = O

(
(1 + p)N

hd

)
.

Recall that N is the number of terms in the truncated Karhunen–Loève expansion of
the coefficients a and f , and k is the discretization parameter in the y-direction. As
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before, we can compute the optimal work for the SGFEM method, yielding

Work∗SGFEM ≤ O((logr(TOL))NTOL− d
2 )

and the asymptotical comparison

lim
TOL→0

Work∗SGFEM

Work∗MCGFEM

= lim
TOL→0

(logr(TOL))NTOL2 = 0.

Therefore, for sufficiently strict accuracy requirements, i.e., sufficiently small
TOL, in the computation of E[u], SGFEM requires less computational effort than
MCGFEM. The work of Bahvalov and its subsequent extensions (cf. [7, 25, 45, 35])
generalize the standard Monte Carlo method, taking advantage of the available
integrand’s smoothness and yielding a faster order of convergence. The optimal
work of such a method is for our case, i.e., the approximation of E[u] in L2(D),

O(C(N)TOL− 1
1/2+q/N TOL−d/2), where it is assumed that the integrand u has

bounded derivatives up to order q with respect to y and the integral is done in the
N -dimensional unit cube.

The result on the computational work of the p × h-version of the SGFEM pre-
sented in this work is then related to the case q = ∞, since u is analytic with re-
spect to y. This analyticity allows the exponential convergence with respect to p; cf.
Theorem 6.3.

Notice that we discussed only the optimal asymptotical computational work re-
quired by both methods, but in practice the constants involved in the asymptotic
approximations make these comparisons just indicative and not conclusive. In addi-
tion, we have studied only the case where the integrals

∫
Γi

ρiy
kdy can be computed

exactly for k = 0, 1, . . . , and not considered the more general case where quadrature
rules are needed to approximate such integrals. For further information we refer the
reader to [6].
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