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ERROR ESTIMATES FOR ADAPTIVE FINITE ELEMENT
COMPUTATIONS*

I. BABUSKAt AND W. C. RHEINBOLDT}

Abstract. A mathematical theory is developed for a class of a-posteriori error estimates of finite
element solutions. It is based on a general formulation of the finite element method in terms of certain
bilinear forms on suitable Hilbert spaces. The main theorem gives an error estimate in terms of localized
quantities which can be computed approximately. The estimate is optimal in the sense that, up to
multiplicative constants which are independent of the mesh and solution, the upper and lower error bounds
are the same. The theoretical results also lead to a heuristic characterization of optimal meshes, which in
turn suggests a strategy for adaptive mesh refinement. Some numerical examples show the approach to be
very effective.

1. Introduction. In the application of the finite element method one of the most
critical decisions is the design of the mesh and the selection of the elements. In
practice, the user has to base his choices on some—necessarily incomplete and often
conflicting—experience with earlier, similar computations (see, e.g., [1]). Moreover,
the reliability of the final results and thereby the adequacy of the original decisions are
generally judged on a corresponding experimental basis. Without question, there is
much need for techniques to compute reliable, a posteriori error estimates of finite
element solutions at reasonable cost.

Error estimates of this type are not only important for an assessment of the
reliability of the results, but provide also a means for adaptive optimization of the
finite element mesh. Optimal mesh design has been considered by several authors
(see, e.g., [2]-[9]). The approaches vary considerably. For example, in [6] heuristic
techniques are derived from energy considerations that are natural to finite element
analysis. On the other hand, [7] uses heuristic methods analogous to those in finite-
difference calculations. In [8] and [9] some mathematical results are evolved and
proved on the basis of some combination of finite difference and finite element
analysis.

In this paper we present a mathematical theory of a class of a-posteriori error
estimates for finite element solutions. A general formulation is employed using
bilinear forms on pairs of suitable spaces. The main theorem shows that localized
computations provide for an error estimate which is optimal in the sense that, up to
multiplicative constants, the upper and lower bounds of the error are the same. The
constants are independent of the mesh and the specific solution and, moreover, in
practice they are not large. The results are in a sense similar to those encountered in
connection with error control in the solution of initial value problems for initial value
problems of ordinary differential equations. The concepts leading to our estimates
may also be applied to the estimation of the formulation error of the problem itself in
comparison to a ‘“higher” problem (see also [10]).

The theoretical results lead to a heuristic characterization of optimal meshes
which in turn translates itself into a strategy for adaptive mesh refinement. Finally,
some numerical examples show the practical usefulness of the results.
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2. Preliminaries.

2.1. Basic notations. Throughout this article Q< R" shall be a given, bounded
domain with Lipschitzian boundary () in the n dimensional, real Euclidean space R"
of vectors x = (xy, - - - , x,)". While this excludes domains with slits, it can be shown
that the results also extend to that case.

We denote by &({)) the space of all real, infinitely differentiable functions on Q
such that each function and any of its derivatives has a continuous extension to Q). All
functions of &(Q) with compact support in  form the subspace 2(Q)< &(Q).

As usual, L,(Q)=H°(Q) is the space of all square integrable functions on Q with
the inner product

2.1) U, V)= I uv dx (dx =dxy dxy - - - dx,)
Q

and the corresponding norm | - ||,«). For any integer k = 1, the Sobolev spaces H Q)
and H§ (Q) are the completions of €(Q) and 2(Q), respectively, under the norm

(2.2) ||u||%r"(m=0<z k||DauHiz<n)
where
alal n
23) D*=————, a=(a1, " ",a,), la|=Y a;, a =0 integers.
axll...xnn i=1

For negative integers k =—1 the spaces H*(Q) and H§(Q) are defined as the dual
spaces of H ™ *(Q) and Ho* (Q), respectively.

All H* Q), k=0,+1,+£2, -, are Hilbert spaces and we denote their inner
products by (*, * )a*q).

2.2. Partitions of the domain. We shall consider partitions of unity
M
(2‘4) \I’:{'Jfl,. : 'a(IJM}, wiEHk(Q)9 d’igo, 'Z—V“l ‘ﬁi(x):l, Ver

of the domain Q and write supp ¢; and supp’ ¢; for the support of i; and its interior,
respectively. It is always possible to partition the set ¥ such that

(2.5a) v=U ¥, U,N¥;= forl#j
1=1

and that the interiors of the supports of the members of each ¥, are disjoint, that is,

l/’i» d/]' € \pb i ¢j

2.5b
(2.50) = supp’ ¢ Nsupp’ ¢; = .
For instance, it suffices to let each ¥, consist of exactly one ;. The smallest integer r
for which (2.5a, b) holds is the overlap index p (V) of V. ~

In addition to (2.4), we will also consider set partitions T of () consisting of
Lipschitzian subdomains, that is,

T={Q, -, M}, cQ, 0Q-Lipschitzian
(2.6)

Q, QNQ; =0 forl#j.
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With each (); we associate a real, positive number h; typically representing some
measure of the size of ;.
For a given pair ¥ = {¢:} and T = {Q.}T we define the index sets

Q7 a=a@, T)={ic{l, -, M}QuNsupp’ % # B}, I=1,---,m.
Then (2.5) implies that
(2.8) Y i(x)=1, VxeQ, I=1,--- m.

ieoy

The maximum cardinality max {|o|, =1, - - -, m} will be called the intersection index
(W, T)of ¥ and T.

For given k =0 let H be a space such that H§(Q)< H < H*(Q2). We consider a
family I of triples (¥, T, V') each of which consists of a partition of unity ¥ (cf. (2.4)),
a set partition T (cf. (2.6)), and a finite dimensional subspace V of H. The family 5
shall be called admissible if its satisfies the following four conditions:

(i) There is a constant p >0 depending only on J such that

p(W)=p, V¥, T, V)ed.
(ii) There is a constant 7 >0 depending only on J such that
TV, )=+, YV, T,V)eT.
(iii) There is a constant Ky >0 depending only on J such that
ID“Yi(x)|=Kohi™, VxeQ, ico(¥,T),
Y, T, V)ed, 0=l|a|=k.

(iv) There is a constant K; > 0 depending only on J such that for any (¥, T, V)e
7, and any v € H, we may find a function ¢ € V for which

(2.10)  |o—elhr@y=K:hi* " Y bl YueT, 0=r=k.

ieo(¥,T)

2.9)

We illustrate these concepts with the following simple example in R '
Example 2.1. Let Q=(0,1), k=1, and

H ={ueH"(Q)|u(0)=0}.

The set partitions T in the triples of J shall consist of the intervals Q; = (x/"1, x/),
=1, .-, m(T), defined by any subdivision

O=xg<x1T<x2T<- . '<X,E(T)=1

of Q for which

hi—
gféﬂa hl=xlT_x'IT—1’ l=1,~-,m(T),
1

T |~

with some fixed u = 1.
For any such T, let

Yo=X0, Yai-1=3(x1+x0), yu=x{, i=1,--, m=m(T).

Then we define the partition of unity ¥ ={y;} in the particular triple (¢, T, V) as the
set of 2m +1 continuous, piecewise linear functions ¢, - -, ¥2,,» on Q which are
linear on each interval [y;—1,y;], j=1,:++,2m, and satisfy ;(y;)=6;, L,j=
0, -, 2m, where §; is the Kronecker symbol.
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Finally, the subspace V < H in the triple (¥, T, V) shall be the m dimensional
space (m =m(T)) spanned by the continuous, piecewise linear functions ¢1, -+, @m
on Q which are linear on each {); and satisfy ;(x;)=8; i=1,---m,j=0,- -, m.

In this case it is readily seen that

p(W)=2, (¥, T)=3, V¥,T,V)eT

and Ko=2/u. Moreover, K; is obtained from the usual finite element theory using
standard interpolation techniques. Clearly, all constants depend only on our choice of
g.

2.3. The bilinear form. Bilinear forms play an essential role in finite element
theory. Let H;, H, be two real Hilbert spaces with inner products (-, * )g, i =1,2,
and corresponding norms. A bilinear form B on H; X H, is called proper if

(l) IB(u’ U)|§C1”u”H1”v”H2’ Yu €H1, v EHz, Cl <00,

(2‘11) (ii) SuI-II) lB(u7 v)\/”vnHngZHu”Hls Vu EHI, C2>O’
006#02
(iii) sup |[B(u,v)|>0, VveH, v#0.
ueH;

Proper bilinear forms have the following important property:
THEOREM 2.1. Let B be a proper bilinear form on Hy X H, and fe H5 a given
linear functional on H,. Then there exists a unique uo<€ H, such that

(2.12) B(uo, v)=f(v), YveH,
and
2.13) ol = -l

For a proof see [11]. Obviously B induces an isomorphism between H; and H5.
Now let # be a family of pairs (V;, V3), each of which consists of finite dimen-
sional subspaces V< H;, V,< H,. A bilinear form B on H; X H, is uniformly ?-
proper if B is proper on H; X H, and for any (V;, V,)e P
@) sup [Bu, v)l/llollv. 2 Cillully,, YueVi C:>0

veVy
v#0

(2.14)
(b) sup |B(u,v)|>0, VveV, v#0.
ueV,

The constant éz depends only on & but not on the particular pair (V1, V>). For such
forms the following result holds:

THEOREM 2.2. Let B be a uniformly ?-proper form on Hi X H, and fe H; a
given functional. Let uo€ H; be the unique element satisfying (2.12)~(2.13). Then for
any (Vi1, V)€ P there exists a unique o€ Vy such that

(2.15) B(io, v)=f(v), VveV,

and

A C .
(2.16) o =l = ( 1+ L) ing e — ol
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For a proof see again [11]. Evidently, the constant (1+ C;/C5) depends only on
2.
In all subsequent discussions we shall assume that the spaces H;, H, satisfy

(2.17a) H&Q)cH,cHNQ), i=1,2,
for some fixed integers ki, k», and that

(2.17b) I e =1 oo =1, 2.

Frequently it is possible to introduce norms in H; and H, that are equivalent to the
norms (2.17) and such that C;=C,=C,=1. This is the case, for instance, when
H,=H,, B(u,v)=B(v, u), Vu, v € H;, and
Collulfir<y=B(u, u) < Cillulz @,

as is typical for self-adjoint problems occurring, say, in structural mechanics.

3. The main error estimates. We begin with a lemma which will play an essential
role in the further theory.

LEMMA 3.1. Let T be an admissible family of triples (¥, T, V') as defined in § 2.2.

Then there exists a constant k(9 )< depending only on I such that for any
W, T,V)eT

(3.1) inf L i =N =x(@olio, Vo H.

Proof. Let (¥, T, V)eJ and ve H be given. There exists a function ¢V
such that (2.10) holds for any /[ with 1 =/=M(¥). In order to evaluate the H k()
norm of ¢;(v —¢) for any i € g;(¥, T) we apply the well known Leibnitz formula and
the property (2.9) of . This leads readily to the estimate

k
i (v — @l @y = €1K 5 20 hi o —elf—s@) Vieo(¥,T),

where the constant ¢; depends only on k. Hence it follows from (2.10) and the
condition (ii) on J that

(3.2) i (v —@Mirkan=cKoK1 Y |olfcq, Viea(¥,T).

jeo(¥,T)
Therefore, we obtain
M) » m(T) M(¥) s
,Zl i (v — @er+y= IZI ‘Zl i (0 — @Mz can
i= = i=

m(T)

=X X )Ilt//i(v—<p)||?4k<a,>

=1 ieoy(¥,T

- N m(T) 5
SKoK: Y |7 Y bl

=1 L jeodrm)
2 2™ 0 20 212
= KoKi7 IZ o)y = c2K oK 177|v||rr< @),
1

where in the last inequality we used (3.2) as well as the conditions (i) and (ii) on .
This proves (3.1).
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As indicated at the end of § 2.3, we fix now two Hilbert spaces which satisfy
(2.17a,b) for certain given integers ki, k.. Moreover, we consider an admissible
family J of triples (W, T, V) such that V is a finite dimensional subspace of H..
Finally, with each V we associate a finite dimensional space V < Hy and form a family
@ of pairs (V, V). With this our main theorem may be praised as follows.

THEOREM 3.2. Suppose that T and P are as stated above, that B is a uniformly P-
proper bilinear form on H, X H,, and that f € H5 is a given functional. Let uo€ H, be the
(unique) solution of (2.12) and, for any (¥, T, V)e J and corresponding (V, V)e®
consider the error e = uo—ily between ug and the (unique) solution iy of (2.15). Then

(3.32) Din =|lells,=D2n
with

M) IB (e, y)|
3.3 =X omi mi=sup e
(3.3b) KV TRl e

v#0

and
(3.30) Diz1/(Cp')  Da=x(?)7/C,

where C1, C,, k(T) are defined in (2.11) and (3.1), respectively, and p is the constant in
the condition (i) on J.

Proof. We prove first the right side of (3.3a). From (2.11) and Theorem 2.1 it
follows that

1 |B(e, v)|

G veH> ”U ”Hz
v#0

G4 lefler, =

and (2.12), (2.15) imply that
B(e,9)=0, VeeV.
Hence, using (3.3b) and Lemma 3.1 we obtain that

lB(ea U)[ = ;EQIB(69 v _(p)l
M)
- int [ple 3 o)

M)
=inf Y nlun(o — v = () olataa

which, together with (3.4), gives the right side of (3.3a).
For the proof of the left side, consider a partition ¥y, - - -, ¥, of ¥ such that
p(¥)=p and (2.5a, b) holds. We set

Hy = vlo= Y ¢w, weHz}, I=1,---,p(¥).
Yie¥;
From (2.5b) it follows that

(l//iw7 'Jllw)Hz = 0’ V(//iy d/] € \I’l’ i ?ﬁj’ 1 = l §-p(\lf)
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Hence, we obtain
Ble.v)l_ &
veHy, “U"Hz WGH:

(st e,

viel;

y, Bleuw) /| 3 vt

Yie¥,;

that is,

LI

veH, ”v“H2 YieV

Now, because of p(¥)=p and (2.11) (ii) it follows that

Zn, Y ¥ misp|sup

M) o) [ |B(e, v)l]2
I1=1 y;e¥, veH; “D”Hz

ellwllv 2
épC?[ sup ”—”ﬂ—”ﬂ] = Cilel,

veH, ”U"Hz

which is the left side of (3.3a).

It should be noted that when the spaces (2.17) and the form B are given, the
constants (3.3c) depend only on the family 7. This raises the question about the
optimal constants Dy, D, for  or any suitable subset of 7. This is an open problem.

Example 3.1. For a given g € L,(0, 1) consider the initial value problem

u' = g(x), xe(0,1), u(0)=0.

Let H, =L,(0, 1) and H, the space H of Example 2.1; that is, k; =1, k, =0. Then
1

3.5) B(u, v)=J u'vdx, ucH, veH,
0

is proper on H; X H, and the constants of (2.11) satisfy C; =1, C,=(2/ 3)"2. On the
other hand, if H; denotes the space H; with the norm replaced by

1
(3.6) M&=Lw¥m

then B is proper on H; X H, with C; = C, = 1. On H, the H'(0, 1)-norm and (3.6) are
equivalent.

Now let 2 be a family of pairs (Vy, V,) where Vi is the space V' of Example 2.1
and

Vo={vlv=u',ue Vy}.

Then (3.5) is uniformly 2-proper on H; X H, and H; x H, with €;=(2/3)"? and
C, =1, respectively.
We use the notation of Example 2.1 and consider the following partitions of
unity:
(a) The partitions ¥ of Example 2.1 with p =2, 7 =3.
(b) The partitions ¥ = {¢;} defined by ¢; = x(x"1,x7), i=1,+ -+, m(T), where
x (a, b) denotes the characteristic function of the interval (a, b). Here we have
p=17=1.
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From
1

Ble,v)=Bluo—iio, 0)= | (@-ib)udx
0
we obtain readily that

N Yie1 5
ni =J lg—1do|° dx in case (a),
Yi—1

nr = J ' lg—@b)*dx  in case (b),
that is, n; is the H, norm of the residuals over supp ();. If H is used, then the constants
(3.3c)are Dy =D, =3 and D; =D, =1 in cases (a) and (b), respectively.

Example 3.2. Consider the boundary value problem

—u"=g(x), Vxe(,1), u(@)=u'(1)=0,

where again ge L,(0,1). Let ky=k,=1, and H;=H where H is the space of
Example 2.1. On H X H the bilinear form

1
B(u,v)=[ u'v' dx, ueH, veH,
(]
is proper and we have C1 =1, C,=(2/ 3)!/2. As before, if instead of H the space H
with the norm (3.6) is used, then B remains proper on H x H but with C;=C,=1.
The family 2 shall now consist of the pairs (V, V) where V is the space of
Example 2.1. Then B is uniformly #-proper on H X H and H x H with ;1= (2/3)""?
and C; =1, respectively. The partitions of unity ¥ are chosen as in Example 2.1.
We determine the quantities n; in the case of H x H. For this let i 1=si=
2m(T)—1, be fixed and z the solution of the auxiliary problem

—z"= g(x), Vxe (Yi—l’ Yi+l)’
2(yi-1) = o (yi-1), z2(yi+1) = do(Yix1).

Then z — g€ H(l) (yi-1, yi+1) and
B(z — i, v)=B(e,v), YveHo(yi-1, yis1),

whence
Rl H [(z — o) T dx]m

veHY(yi—1,¥i+1) ”v”H

and therefore

Yir1
nt=[ - toPax

Yi—1
In this case we have D; = D, =3 and hence n; represents the exact error on (yi—1, yi+1).
In general, it is, of course, not possible to determine the 7; exactly. However, the
last example already indicates that the m; are determined by the solution of certain
auxiliary problems on the ‘“‘small” domains {);. This, in turn, suggests that we may use
approximate solutions of the auxiliary problems to obtain approximations of the ;.
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The theory in this section was based on the Sobolev spaces H* (). It is easy to
see that the results can also be generalized to other spaces, such as, for instance,
weighted Sobolev spaces, energy spaces, etc.

4. Finite element meshes and the admissibility of 7. In § 2.2 we introduced four
conditions for the admissibility of the families I of triples (¥, T, V) on which the
results of § 3 are based. As we saw in the various examples, the triples derive usually
from the finite element meshes under consideration and their corresponding element-
shape-functions. For families I of this type it tends to be fairly simple to verify the
first three admissibility conditions.

In the case of one-dimensional problems, the function ¢ in the fourth admis-
sibility condition can be derived easily by interpolation, and (2.10) follows if only the
ratio between the length of neighboring intervals is bounded. For higher-dimensional
problems, interpolation can no longer be used since there is no imbedding of H Q)
into the space of continuous functions on (). Nevertheless, under certain, standard
assumptions about the meshes, admissibility of the resulting families J can be shown
for these problems as well.

The proof procedure is best explained on a specific example. For this we consider
the case of two-dimensional meshes of triangular, linear elements. It should be readily
evident how the approach extends to other more complicated situations.

Specifically, let ) be a domain in R? with a polygon as boundary. We use set

partitions T of ) into closed triangles 7, i =1, - - -, m(T), with the following standard
properties:
(i) The interior ; of 7, i=1, -+, m(T), is a nonempty subset of ().

_ m(M
4.1 @) Q= U 7.
i=1
(iii) The intersection of two nondisjoint, nonidentical triangles 7;, 7; of T
consists either of a common vertex or a common side.

With each triangle 7; we associate two characteristic values, namely, the diameter
h; = h(r;) and the modulus of the minimal angle «; = a(7;). Then the partitions T of
the family J of triples are assumed to satisfy the following uniformity condtions:

(a) O0<ao=a(r), VmeT

' VY, T, V)ed.
h(T’)éﬂh VT,‘,T,'ET, ﬁﬂfﬁﬁ@ ( )
h(7;)

4.2)

(b) 0<Bo=

It is easily seen that (b) follows from (a).

Let T be any one of these triangular subdivisions of €}, and {ij}C Q) the collec-
tion of all vertices of the triangles = of T. For any vertex x; we introduce the
continuous, piecewise linear function ¢;: Q- R such that ;(x ,T )= 8. Then ¥ = {y;}
represents a partition of unity of Q. Finally, let V = H = H(Q) be the finite dimen-
sional subspace of functions spanned by all those ¢; of ¥ which are zero on the
boundary. This completes the definition of the triples (¥, T, V) of 7.

THEOREM 4.1. The above family T of triples is admissible.

Proof. From (4.2) (a) it follows that a vertex x; belongs at most to v =27/aq
triangles. Thus for any (¥, T, V)€ J the overlap index p({)) is bounded by this
number v and the first condition on 7 is valid.
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For any (¥, T, V)e 7 we have supp’ ; Nsupp’ ¢; # & for some ¢;, y; € ¥ if and
only if the corresponding nodal points x; and x; are vertices of the same triangle.
Hence the intersection index 7(¥, 7) cannot exceed 7= 3. This proves the second
admissibility condition for J. The third condition follows immediately from (4.2) (b)
since all ¢; are piecewise linear.

This leaves us with the fourth condition and the estimate (2.10). Because () is a
Lipschitzian domain, there exists a partition of unity of () consisting of functions
xi€ (@), j=1,---,n, as well as a set of unit vectors p; €R? j=1, -, n,such that
for any v e Hj ())—extended by zero to all of R*—we have, with a suitable #,>0,

v,;,(x)=v,~(x +tpf)CH(1)(Q), v = XU, 0=t=t,
d;(t) = dist(3Q), supp v;,) = dot, j=1,---,n, do>0.

By standard arguments’ it then follows that
(4.3) v = il = Cltl_s“vi”H’(Q), s=0,1.

For given £ >0 we denote by v;, the function obtained by averaging v;, with a
convolution that has a kernel of the form w (x/¢) and support in ||x|| < e. For e =K, we
then have v, € Hg (Q) and

(4.4) v ey = c2e ™ vl
4.5) ”Uft“vjt”H‘(Q)——QS ”sz“Hl(Q), s=0,1.

Now specific values of ¢ and ¢ have to be chosen. Any nodal point x; € Qof a
partition T of I belongs to « triangles of T, say, P, 19 We define

&=min{h(r{),j=1," -, «}.
and
o =vf, €i = &y, =&k, A< (do/z))‘z'

Here A, is to be taken sufficiently small to ensure that for any x € 7 the value v i 1 (x)
depends only on the restriction of v; to the union of all 7 in 7" for which 7, Nrd#=d.
It is easily seen that such A4, A, exist independently of the choice of T in . Moreover,
we note that v} (x)= 0 for all x € 9Q and indices i/ and j.

We introduce the functions

WE‘] =l!llv£l], de’ [']

and estimate w; —v;. For this, let 7, be a triangle of T with vertices xi, i = 1,2,3, and
let Y, € ¥ be the corresponding functions associated with these nodes. Then it follows
from

! Using Fourier transform theory we have
o = villerory = 1 j L TIF @™ =)/ dr
R

and since the function in square brackets is bounded we get (4.3) for s =0. For s =1 the inequality is
obvious.
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that on 7%
> k]
W — v = ,Zl Ui (i — ;).
2

Since by (4.3) and (4.5)

955 — 0,15 oy = 4103, — OsllFrs ey + 05 = Vil ()

(4.6) = cahi X (oillEer o + 0l )

TN T #
=cshi™ Y vk, s=0,1,
TNF =S
we find, using (2.9), that

(47) ”W]'_Uj||§.18(,-k)§c6hi(l_s) Z “Uf“%{l(ﬂ)’ §= Oa 1.
FNT #D

Moreover, because the ; are piecewise linear, it follows from the definitions of w;
and (4.4) that

(4.8) Il = erhi® % il

T\ Fpe #

Now let ¢ be the piecewise linear interpolation function which is linear on each
triangle and agrees with w; at the vertices. Thus ¢ =0 on Q) and

%—I‘(-rk)é Cshi(z_”“wi”iﬂ(‘m)’ s=0,1.

lw; — el

Therefore, from (4.7) and (4.8) we obtain

4.9) lo; = el @ =cohi ™ Y lollie s=0,1,
FNF =D

and because

(4.10) loillertezp = crollvller erys

the inequalities (4.9) and (4.10) together give (2.10). This completes the proof.

5. Computation of the n; and optimal mesh design. For the application of the
estimate (3.3), we need to compute the 7;. This depends, of course, on the selection of
the ¢, If H, is the space H°(Q), then the ¢; may be chosen as the characteristic
functions of the subdomains );. But, in general, the matter is more complicated. Once
again, it will be best to discuss the main approach in the case of a special example.
There should be little difficulty in extending the techniques to other situations.

We consider the Poisson problem

5.1) —Au=g on{; u=0 ondQ, ge H°(Q),
where, as in § 4, Q is a polygonal domain in R>. The associated bilinear form

ou v ou v
0x1 0X1 0X2 0X2

(5.2) B(u,v)=J( >dx, YueH,, veH,,
QO

is proper on H; =H,=H{(Q). Moreover, if H denotes the space H () with the
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(equivalent) norm
(5.3) luelZr= B (u, )

then B is also proper on H x H and the coefficients of (2.11) are C; = C,=1.

We proceed as in § 4 and introduce the family of triples 7 of Theorem 4.1. Hence
the partitions T of J consist of the triangularizations of () that satisfy (4.1, 4.2) and
with any nodal point xT of T we associate the continuous, piecewise linear function ¢;
with ¢;(x ,T )= &,. The support of ¢; is then the union of all triangles of J which have
x{ as a node. The form (5.2) is uniformly ?-proper on H x H for the family 2 of pairs
(V, V), V(¥, T, V)e J, with constant ¢, =11n (2.14) (a).

Let @i, be the finite element solution of (5.1), (5.2) on a given mesh T of
triangular, linear elements. In order to compute a particular n; we solve the auxiliary
problem

5.4) —Aw=g onQ;=supp’ ¢, w=1io on ;.

Then it follows directly from the definition (3.3b) that

> 9 R 2 9 . 2

(5.5) nt = (-t w)) + (= o-w)) ] ax

(oM x4 X2

Of course, in general, only an approximation w* of w can be computed. For this there
are many possibilities. For example, we may use higher order elements in (}; or
instead refine the mesh in (); by subdividing the existing triangles. Then by replacing w
in (5.5) with w*, we obtain an approximation ¥ of n;. Note that the evaluation of n}
requires only the microstiffness matrices which were used in the computation of w*.

By our construction the approximation error m; —n7¥ is of higher order in the
mesh size than the error in the solution #,. This is similar to the situation in the
approximate solution of initial value problems for ordinary differential equations by
multistep methods (see, e.g., [12]). This relates also to the value () in (3.1) which,
of course, is not known either. Studies of various special cases indicate that « (") tends
to be reasonably small, provided the mesh ratio between neighboring elements is not
large.

In the present example the partition of unity ¥ consisted of the basis functions of
the mesh. There are numerous other possibilities for choosing W. For instance, we
may define ; as the base functions in the mesh obtained by subdividing all triangles of
T.

It is as yet an open problem how to construct partitions of unity ¥ which are
optimal both from the viewpoint of the error estimates and for the ease of computing
approximate values for the ;.

The quantities n;, or, more realistically their approximations 5, provide a
heuristic for optimizing the finite element mesh. Generally speaking, the problem of
designing an optimal finite element mesh for a particular problem is very difficult and
costly. From a practical viewpoint, there is no reason to make a large effort toward
optimizing the mesh exactly. Instead we need only seek for meshes which are reason-
ably optimal and for this heuristic procedures appear to be best suited. In principle,
this is the approach used in the case of ordinary differential equations (see, e.g., [13],
[14]).

Consider again the special problem (5.1) as discussed above. We restrict the
meshes of 7 by assuming the existence of a continuous function x: 0> R L1 x(x)>
0, with the property that for any H >0 there is a partition T'(H) of () into triangles
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H .
Tk =T, With

(5.6) aH mig x@)=h(rH=cH mi}r} x(x)

where h( - ) denotes the diameter of the triangle. Then the errror e = uo — i, satisfies—
because of the piecewise linear elements—

(5.7) el | x(Pa(e) dv =Nl = coH? [ x(ePato) dx
(93 Q

with

q(x)= (&‘2>2+2( 2t >2+ (62”0)2.

axf dx1 0X2 ax§

This suggests the heuristic assumption
(5.8) lelfr = cH? L x(x)Yq(x)dx,  H small.

The number of elements N in the mesh satisfies
(5.9) csH™? Lx(x)"2 dx=N=c¢H > Jn x(x) 7 dx.
Hence corresponding to (5.8) we introduce the further heuristic assumption that
(5.10) N=¢H> L X2 dx.

Now we should minimize (5.8) subject to the constraint that the number N of
(5.10) is fixed. By the usual Lagrange multiplier approach this results in

Hy(x)=éq(x)™"*

or
(5.11) llelffrn = EH *x (x)*q (x) = const.

Therefore, we obtain an almost optimal mesh if the errors in the energy norm will be
approximately equal for all elements.
Earlier in this section we specified n; by (5.5), that is, by

ni = ”120— Wi||H(0g)
where ); is the union of all elements with the common node xT. Thus we have
m(T) m(T) m(T)
2 2 A 2 _ A2
=YX =% X ”uo—Wi”m,i)“ Y N
i=1 i=1 ,Tes j=1

with
(5.12) 5 =£Z [|ﬁ0—wi||fq(7j), j=1,-+,m(T)

This suggests that we associate the number (5.12) with each element 7; of the (current)
triangulation. Then we may expect that the mesh is approximately optimal if the values
7, are nearly equal. In practice, of course, only approximations of n; and hence 7; are
known.
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6. Computational details and results. As mentioned in the Introduction, our
a-posteriori error estimates allow not only for an assessment of the reliability of the
results of a finite element computation but also for the design of adaptive mesh
refinement procedures. For the latter we apply the theory of the previous sections to
families of partitions of the domain which are generated from some prescribed basic
partition by repeated application of a specific refinement procedure.

As before we proceed by discussing a typical example. Consider the Cauchy-
Riemann equations, that is, the system of Petrowski type,

ou, 6u2 _

ax1 oxs
(6.1) (x1,x2)€eQ
]
dur uy_
dx, 0X1

on the L-shaped domain in R?

6.2) Q={x|0=x1, x,<3}U{x|-3<x1=0=x, <3} U{x|-3<xy, x,=0}.
Then

(6.3) uy=g onod

represents a complementary boundary condition of (6.1). We choose g such that the
exact solution becomes

/ 2/

2/3 . 2 3 2
uy=r"""sin 3o, U,=-—r""coszp+c

where (r, ¢) are polar coordinates in R>. Note that the solution of (6.1), (6.3) is unique
up to an additive constant in u, which we fix such that

6.4) [ wax=02
Q
With our problem we associate the bilinear form
ou, Oup duy dup
o e [ (]
( ) (u1 Uz; U1 Uz) ) (aXI a%s U1 <3X2 o1 (% dx

which is proper on H;x H, where H,=H}(Q)xH'(Q), H,= H°(Q)x H°(Q)), and
H'(Q)={ueH'(Q); [, us dx =0}.

We shall use square, bilinear elements. For this the family of admissible partitions
T of Q) is defined recursively by the following two rules:

(a) The partition consisting of the three congruent squares of (6.2) with
sidelength 3 is an admissible partition.
(6.6) (b) If T is an admissible partition of (), then a new admissible partition is
obtained by dividing any square of T of sidelength, say, A, into four
congruent squares of sidelength h/2.

A sample partition is shown in Fig. 1.

With each partition T we associate subspaces Vi< Hy(Q), Vi< H'(Q) of
functions which are continuous on () and bilinear on each square of T. Then the form
(6.5) is uniformly %?-proper on the family of space pairs (Vi, V,) where V=

2 For the computation it is more advantageous to normalize the approximate solution such that
u5(0,0)=0.
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1 2 3 4
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5 10
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23124125126,
3031
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32)
28 33
34 | 35
27
36 37
38 39
FIG. 1

ViiX Vi, Vo= V51X V,, and

duy ou

Voa= {u =_1—_2; ure Vi, uze V1,2}
0X1 aX2
ou; ou

V2‘2= {u =—1+—2; U e V1,1, Ur e V1,2}-
3X2 0X1

If we complete the definition of the family of triples J by using as partitions of
unity the characteristic functions on the squares of the subdivision, it follows that all
conditions of our theory hold and Theorem 3.2 is valid. Moreover, we find that on
each square 7; of a subdivision T

6.7) nl= L (R? + R3) dx

where R; and R, are the residuals for the particular finite element solution. Thus in
this case the computation of the n-values is particularly simple, but our discussion
does not depend on this.

Let Ty be any mesh obtained in the refinement process; for instance, Tx may be
the starting mesh (6.6a). We compute the finite element solution on T, and the
corresponding m-values (6.7). These n-values identify which of the elements should
be subdivided. In line with the conclusions of the previous section, we wish to keep the
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n-values as close together as possible. For this we use a simple heuristic prediction
scheme to forecast what may happen to the n-values if an element is subdivided.
Suppose that locally the n-values have an asymptotic behavior of the form

(6.8) n=ch*, ash-0

where h is the characteristic size of the element. If any element 7; with corresponding
value 7; was generated by subdividing an element in a prior mesh with value 7%, then
(6.8) suggests that the (worst) n-value after dividing 7; will be approximately

2
(6.9) ni" = ("él)d~
ni

Practical experience has shown that, in general, this prediction can be expected to be
rather satisfactory.

Clearly now, we should refine only those elements in 7, which have an n-value
above the largest predicted new 7-value in the next mesh. In order to start that
process, the first step should consist in the refinement of all elements of the basic
mesh. In algorithmic form this scheme can be written as follows:

1. cut:=0
2. If “current mesh T 'is the basic mesh” then go to 4
3. For “each element 7 in T do
3.1. Compute n
3.2. If n"¥>cut then cut :== "¢
4. For “each element 7 in T’ do
4.1 If n > cutthen subdivide 7 and for each new

element set n°° = 7

W

We shall not discuss here any further implementation details.

At each level the resulting mesh is approximately optimal in the sense of § 5.
Hence the process may be stopped with any mesh. As a stopping criterion we can use
either a desired accuracy, |le| = tolerance, or a prescribed maximal computational cost
(see [15]).

As an example of the procedure, Fig. 1 shows a mesh obtained after several steps
for the above sample problem. The corresponding n-values are given in Table 1. In
order, the ten largest n-values are associated with the elements

31, 25, 24, 27, 3, 5, 2, 38, 10, 1
while the predicted new n-values for the first three of the elements turn out to be
0.204(-1), 0.204(-1), 0.177(-1).

The above algorithm determines that the “cut” is at 0.204(—1) which means that the
first nine of the indicated ten elements should be subdivided.
Under the heuristic assumptions of the previous section we obtain in this case

Il{imo h(ri) = h(x1, x2) = const. r /3.

The curve const |x |2/ * compares well with our computed distribution of h-values along
the x-axis in ().

As another example, we consider the two-point boundary value problem

1

(6.10) —u"+u=F(x), 0<x<1; F(x)=-x"+px"", é=m’
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TABLE 1
Element 9 Element 9
1 0.170(-1) 13,17 0.825(-2)
2,5 0.210(-1) 14,29 0.883(—2)
3,27 0.220(-1) 15, 34 0.895(-2)
4,38 0.167(-1) 16, 37 0.134(-1)
6 0.147(-1) 18 0.611(-2)
7,11 0.133(-1) 19,23 0.522(-2)
8,28 0.137(-1) 20,30 0.551(=2)
9,36 0.140(-1) 21,32 0.594(-2)
10, 39 0.207(-1) 24 0.287(-1)
11 0.133(—-1) 25,31 0.296(—1)
12 0.951(-2) 26, 36 0.582(—2)
with the nonzero boundary conditions
(6.11) u©0)=0, u(l)=4.
Obviously, for B8 > —2 the exact solution is
(6.12) uo(x)=Bx**2.
The associated form
1
(6.13) B(u,v)=j (u'v'+uv)dx
0

is proper on Hg(0, 1)x H (0, 1). We proceed as in Example 2.1 and use piecewise
linear elements. But, for simplicity, we consider the partitions of unity {¢;} consisting
of continuous, piecewise linear functions ¢; with :(x;) =8, 1,7 =0, - - -, m(T). In this
case we have

Xial
6.14) i =mio+ni,ma= j [(zi —@6)°+(zi~ o) dx,  1=0,1,

Xi—1+1
where z; is the exact solution of (6.10) on (x;—1, X;+1) such that
Zi(Xi—1+21) = fo(Xi-1421), [=0,1.
These z; may be computed approximately as finite element solutions on the mesh
Xict, 3o+ %), X 3+ Xin),  Xiaa

with the same type of elements. By replacing the z; in (6.14) with these results we
obtain rather satisfactory approximations of the n;. Moreover, we find, as expected,
that ;1 = m;+1.0, SO that any interval contributes to n; about twice the same amount.
Hence it is natural to associate with [x;, x;+1] the average #; =3[nmi1+Mi+1.0]. Some
numerical results are summarized in Table 2 below. For each level we give the
partition points x;, the lengths &; of the intervals, and the corresponding values ;. The
above refinement algorithm was used. The last level also includes the function

hix)=x"%°

computed at the midpoints of the intervals. This represents the asymptotic step-
distribution for this example.
For additional results in the one-dimensional case see [16].
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TABLE 2
1 2 3
X hy i x; hy i x; h; i
0 0 0
1/4 6.9(-2) 1/8 3.1(=2) 1/16  1.3(=2)
1/4 1/8 1/16
1/4 5.8(-2) 1/8 2.6(-3) 1/16  1.1(=3)
1/2 1/4 1/8
1/4 2.3(-3) 1/4 5.8(=3) 1/8 2.6(-3)
3/4 1/2 1/4
1/4 1.3(=3) 1/4 2.3(-3) 1/4 5.8(-3)
1 3/4 1/2
1/4 1.3(=3) 1/4 2.3(=3)
1 3/4
1/4 1.3(-3)
1
4 5 6
Xi hi i X hy i X hi i hasy
0 0 0
1/32 5.7(=3) 1/64  2.5(-3) 1/128 1.1(-3) 0.78(-2)
1/32 1/64 1/128
1/32  4.8(—4) 1/64  2.1(-4) 1/128 9.2(-5) 0.15(-1)
1/16 1/32 1/64
1/16  1.1(=3) 1/32 4.8(—4) 1/64  2.1(-4) 0.23(-1)
1/8 1/16 1/32
1/8 2.6(-) 1/16  1.1(-3) 1/32 4.8(—4) 0735(-1)
1/4 1/8 1/16
1/4 5.8(=3) 1/8 2.6(-3) 1/16  1.1(=3) 0.52(-1)
1/2 1/4 1/8
1/4 2.3(-3) 1/8 9.9(—4) 1/16  4.4(—-4) 0.71(-1)
3/4 3/8 3/16
1/4 1.3(=3) 1/8 5.4(—4) 1/16  2.4(-4) 0.87(-1)
1 1/2 1/4
1/4 2.3(-3) 1/8 9.9(-4) 0.11
3/4 3/8
1/4 1.3(=3) 1/8 5.4(-4) 0.13
1 1/2
1/8 3.4(-4) 0.15
5/8
1/8 2.4(—4) 0.17
3/4
1/4 1.3(-3) 0.20
1
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