
SIAM J. NUMER. ANAL.
Vol. 15, No. 4, August 1978

1978 Society for Industrial and Applied Mathematics
0036-1429/78/1504-0007 $01.00/0

ERROR ESTIMATES FOR ADAPTIVE FINITE ELEMENT
COMPUTATIONS*

I. BABUKA AND W. C. RHEINBOLDT$

Abstract. A mathematical theory is developed for a class of a-posteriori error estimates of finite
element solutions. It is based on a general formulation of the finite element method in terms of certain
bilinear forms on suitable Hilbert spaces. The main theorem gives an error estimate in terms of localized
quantities which can be computed approximately. The estimate is optimal in the sense that, up to

multiplicative constants which are independent of the mesh and solution, the upper and lower error bounds
are the same. The theoretical results also lead to a heuristic characterization of optimal meshes, which in
turn suggests a strategy for adaptive mesh refinement. Some numerical examples show the approach to be
very effective.

1. Introduction. In the application of the finite element method one of the most
critical decisions is the design of the mesh and the selection of the elements. In
practice, the user has to base his choices on some--necessarily incomplete and often
conflicting--experience with earlier, similar computations (see, e.g., [1]). Moreover,
the reliability of the final results and thereby the adequacy of the original decisions are
generally judged on a corresponding experimental basis. Without question, there is
much need for techniques to compute reliable, a posteriori error estimates of finite
element solutions at reasonable cost.

Error estimates of this type are not only important for an assessment of the
reliability of the results, but provide also a means for adaptive optimization of the
finite element mesh. Optimal mesh design has been considered by several authors
(see, e.g., [2]-[9]). The approaches vary considerably. For example, in [6] heuristic
techniques are derived from energy considerations that are natural to finite element
analysis. On the other hand, [7] uses heuristic methods analogous to those in finite-
difference calculations. In [8] and [9] some mathematical results are evolved and
proved on the basis of some combination of finite difference and finite element
analysis.

In this paper we present a mathematical theory of a class of a-posteriori error
estimates for finite element solutions. A general formulation is employed using
bilinear forms on pairs of suitable spaces. The main theorem shows that localized
computations provide for an error estimate which is optimal in the sense that, up to
multiplicative constants, the upper and lower bounds of the error are the same. The
constants are independent of the mesh and the specific solution and, moreover, in
practice they are not large. The results are in a sense similar to those encountered in
connection with error control in the solution of initial value problems for initial value
problems of ordinary differential equations. The concepts leading to our estimates
may also be applied to the estimation of the formulation error of the problem itself in
comparison to a "higher" problem (see also [10]).

The theoretical results lead to a heuristic characterization of optimal meshes
which in turn translates itself into a strategy for adaptive mesh refinement. Finally,
some numerical examples show the practical usefulness of the results.
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ERROR ESTIMATES 737

2. Preliminaries.
2.1. Basic notations. Throughout this article fl c R shall be a given, bounded

domain with Lipschitzian boundary 0fl in the n dimensional, real Euclidean space R"
of vectors x (xl,’’’, xn). While this excludes domains with slits, it can be shown
that the results also extend to that case.

We denote by (fl) the space of all real, infinitely differentiable functions on fl
such that each function and any of its derivatives has a continuous extension to 0. All
functions of (fl) with compact support in l-I form the subspace @()c ().

As usual, Lz()= H(fl) is the space of all square integrable functions on with
the inner product

(2.1) (u, V)L2(a) Ja UV dx (dx dx dx2 dx,,)

and the corresponding norm [[. [IL2(a). For any integer k _-> 1, the Sobolev spaces Hk

and Hok (II) are the completions of (1) and @(fl), respectively, under the norm

(2.2) 11u112): 2 IIOull=)
O=<lal-<k

where

(2.3) Da- a=(a,...,a,), lal= 2 ai, ai_->0integers.
OXl Xn i=1

For negative integers k _-<-1 the spaces Hk (fl) and Hok (D,) are defined as the dual
spaces of H-k (D,) and H-k (fl), respectively.

All Hk(fl), k =0, +1, +2,..., are Hilbert spaces and we denote their inner
products by (.,

2.2. Partitions of the domain, We shall consider partitions of unity

M

(2.4) ={41,""",
i=1

of the domain l’l and write supp i and supp 4i for the support of bi and its interior,
respectively. It is always possible to partition the set such that

(2.5a) W J I)’l, I3’l fq xP for # ]
/=1

and that the interiors of the supports of the members of each t are disjoint, that is,

(2.5b) == supp /i ["] supp 49 "
For instance, it suffices to let each )’l consist of exactly one 4i. The smallest integer r
for which (2.5a, b) holds is the overlap index p() of .

In addition to (2.4), we will also consider set partitions T of f consisting of
Lipschitzian subdomains, that is,

(2.6)
T {Q1, ),m}, I’ll C [-, Ogl/-Lipschitzian

[- U [’ O ’ for
/=1
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738 I. BABUKA AND W. C. RHEINBOLDT

With each f we associate a real, positive number h typically representing some
measure of the size of f.

For a given pair {i}/ and T {D,i} we define the index sets

(2.7) O’l O’l(, T) {i E {1,..., M}II supp Oi # }, 1, , m.

Then (2.5)implies that

(2.8) ’. 0i(x)=l, VxE, l=l,...,m.
io’z

The maximum cardinality max 1,,,,, m} will be called the intersection index
-(, T)of q and T.

For given k >= 0 let H be a space such that H0 (O,)c H cHk (f). We consider a
family of triples (q, T, V) each of which consists of a partition of unity q (cf. (2.4)),
a set partition T (cf. (2.6)), and a finite dimensional subspace V of H. The family ff
shall be called admissible if its satisfies the following four conditions:

(i) There is a constant p > 0 depending only on such that

p(,I,)_<-p, v(, T, V)

(ii) There is a constant -> 0 depending only on - such that

(iii) There is a constant K0 > 0 depending only on - such that

(2.9)
ID’i(x)l <= Koh-I’l, Vx E , E O’l(Iy, T),

V(, T, V)E -, o<_-Ial_-<k.

(iv) There is a constant K1 > 0 depending only on such that for any (, T, V), and any v E H, we may find a function V for which

(2.10) Ilv-qllr.,<--gh- E Ilvll,.,, V’I T, O<=r<-k.
trt(xlt, T)

We illustrate these concepts with the following simple example in R 1.
Example 2.1. Let f (0, 1), k 1, and

H {u E H(O)lu (0) 0}.

The set partitions T in the triples of - shall consist of the intervals "l--(XT--1, X T),
1,’" ", m(T), defined by any subdivision

of 2 for which

TO=xor<x’<x’<’’’<x,.(r) 1

1 <hi-l< ht XT XL1 1 m(T),
ht =t-

with some fixed/x => 1.
For any such T, let

y0=xo, y_= x +x y=x, i=l,...,m=m(T).

Then we define the partition of unity q {0i} in the particular triple (4’, T, V) as the
set of 2m + i continuous, piecewise linear functions 0o,’", 0,, on which are
linear on each interval [y_,y.], j=l,...,2m, and satisfy 4q(yi)=$ii, i,j=
0,. ., 2m, where 6i is the Kronecker symbol.
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ERROR ESTIMATES 739

Finally, the subspace V c H in the triple (, T, V)shall be the m dimensional
space (m m(T)) spanned by the continuous, piecewise linear functions ql," ,
on f which are linear on each ll and satisfy qi(xi) 6ij, 1,... m,/" 0,..., m.

In this case it is readily seen that

p()= 2, r(, T)= 3, /(, T, V)m -and K0-2/ix. Moreover, Ka is obtained from the usual finite element theory using
standard interpolation techniques. Clearly, all constants depend only on our choice of-.

2.3. The bilinear form. Bilinear forms play an essential role in finite element
theory. Let Ha, H2 be two real Hilbert spaces with inner products (., )H,, i= 1, 2,
and corresponding norms. A bilinear form B on H1 x H2 is called proper if

(2.11) (ii) sup IB(u, v)l/llvllH=->_Gllulll, Vu ell1, C2>0,
v0

(iii) sup IB(u,v)l >0, VvH2, v0.
uEH1

Proper bilinear forms have the following important property:
THEOREM 2.1. Let B be a proper bilinear form on Ha x H2 and f H’2 a given

linear functional on H2. Then there exists a unique uo Ha such that

(2.12) B(uo, v)=f(v), Vv ell2

and

(2.13)

For a proof see [11]. Obviously B induces an isomorphism between Ha and H.
Now let be a family of pairs (V1, V2), each of which consists of finite dimen-

sional subspaces Va c Ha, V2 c H2. A bilinear form B on Ha H2 is uniformly -proper if B is proper on Ha H2 and for any (Va, V2)6

(a) sup IB(u, v)l/[l llv >-d2llullvl, Vu Vl, d2>0
re0

(2.14)
(b) sup [B(u, v)l > 0, Vv V2, v m 0.

The constant (72 depends only on but not on the particular pair (Va, V2). For such
forms the following result holds:

THEOREM 2.2. Let B be a uniformly -proper form on H1 x H2 and f H’2 a
given functional. Let uo H1 be the unique element satisfying (2.1 2)-(2.13). Then for
any (V1, V2)e there exists a unique o V1 such that

(2.15) B(ao, v)= f(v), Vv V2
and

(2.16) C_1’] inf [[W-Uo[[ul.][Uo- uollnl --< 1 +
C2] V
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740 I. BABUKA AND W. C. RHEINBOLDT

For a proof see again [11]. Evidently, the constant (1-1 C1/2)depends only on

In all subsequent discussions we shall assume that the spaces H1, H2 satisfy

(2.17a) H0’ (D.) c Hi c Hk, (D.), i= 1, 2,

for some fixed integers k l, k2, and that

(2.17b) I1" I1, I1" II,<m, i= 1, 2.

Frequently it is possible to introduce norms in H1 and H2 that are equivalent to the
norms (2.17) and such that C1 C2 2 1. This is the case, for instance, when
Ha He, B(u, v)= B(v, u), Vu, v Ha, and

2

as is typical for self-adjoint problems occurring, say, in structural mechanics.

3. The main error estimates. We begin with a lemma which will play an essential
role in the further theory.

LF.MMA 3.1. Let - be an admissible family of triples (q, T, V) as defined in 2.2.
Then there exists a constant K(-)<oO depending only on -such that for any
(xlt, T, V) - M(aI)

(3.1) inf E II0/(D (4 )l 2 -< vv
oV /=1

Proof. Let (, T, V) - and veH be given. There exists a function 6 V
such that (2.10) holds for any with 1 _-<l_-<M(q0. In order to evaluate the Hk(D.t)
norm of Oi(v-q) for any e O-l(, T) we apply the well known Leibnitz formula and
the property (2.9) of -. This leads readily to the estimate

k

s=0
Vi O’l(Iy, T),

where the constant Cl depends only on k. Hence it follows from (2.10) and the
condition (ii) on - that

(3.2) [lo,(v-)ll"(.,<=cgogl E [Ivll"(n,), Vi o’(, T).
o’l(Xlt, T)

Therefore, we obtain

M(xIt) re(T) M(xl2")

i=1 /=1 i=1

re(T)

l--- ieo’t(xlt, T)

<= c2KKlr2 mr) 2

/=1

where in the last inequality we used (3.2) as well as the conditions (i) and (ii) on -.
This proves (3.1).
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ERROR ESTIMATES 74 1

As indicated at the end of 2.3, we fix now two Hilbert spaces which satisfy
(2.17a, b) for certain given integers k l, ka. Moreover, we consider an admissible
family - of triples (, T, V) such that V is a finite dimensional subspace of H2.
Finally, with each V we associate a finite dimensional space Q c H1 and form a family

of pairs (’, V). With this our main theorem may be praised as follows.
THEOREM 3.2. Suppose that " and are as stated above, that B is a uniformly -proper bilinearform on H1 H2, and thatf H’2 is a given functional. Let Uo H1 be the

(unique) solution of (2.12) and, for any (, T, V) and corresponding (r, V)
consider the error e Uo-o between Uo and the (unique) solution o of (2.15). Then

(3.3a) D, -< lie[In1

with

(*) IB (e, Oiv )l2 2(3.3b) r/ Y r/i, r/i sup
v0

and

(3.3c) D1 >= 1/(Clp/2), D2 <=K()/2/C2,

where C1, C2,/ (,-’) are defined in (2.11) and (3.1), respectively, and p is the constant in
the condition (i) on -.

Proof. We prove first the right side of (3.3a). From (2.11) and Theorem 2.1 it
follows that

(3.4)

and (2.12), (2.15) imply that

1 IB (e, v)l
Ilel[-<-- sup

vO

B(e,q)=O, VqeV.

Hence, using (3.3b)and Lemma 3.1 we obtain that

[B (e, v)l inf IB (e, v q)[

inf B e, 0i(V (49
V i=1

M(XI)
<_-inf iI]Oi(V--q)IIH2(F)’K(")I/2I]VI[H2(fl
wV i=1

which, together with (3.4), gives the right side of (3.3a).
For the proof of the left side, consider a partition 1,..., o(,I,) of such that

p(qt)<= O and (2.5a, b) holds. We set

vlv E O,w, w H},
From (2.5b) it follows that

(OiW, OjW )H2 0, I0i, 0j ’I3’l,

t= ,..., p(,).

ii, 1-<_ <--p().
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742 I. BABUKA AND W. C. RHEINBOLDT

Hence, we obtain

IB(e,v)l
sup sup

that is,

1/2

1/2

Now, because of p()<-_p and (2.11) (ii) it follows that

_-< pCI supvH2
Ile[Inl[Ivllz-I2] z C llell  

which is the left side of (3.3a).
It should be noted that when the spaces (2.17) and the form B are given, the

constants (3.3c) depend only on the family . This raises the question about the
optimal constants D1, D2 for - or any suitable subset of -. This is an open problem.

Example 3.1. For a given g e L2(0, 1) consider the initial value problem

u’ g(x), x (0, 1), u (0) O.

Let H2 L2(0, 1) and H1 the space H of Example 2.1; that is, k 1, k2 0. Then

(3.5) B(u, v)= Jo u’vdx, u 6H1, v6H2

is proper on Ha x H2 and the constants of (2.11)satisfy C1 1, C2>=(2/3)1/2. On the
other hand, if Ha denotes the space H1 with the norm replaced by

(3.6) Ilull ,-- Io dx,

then B is proper on/-a x H2 with C1 C2 1. On Hi the Ha(0, 1)-norm and (3.6) are
equivalent.

Now let be a family of pairs (V1, V2) where Va is the space V of Example 2.1
and

vz= {vlv u’, u e vl}.

Then (3.5) is uniformly -proper on HlXHz and /-a x H2 with 2(2/3)a/2 and
C2 1, respectively.

We use the notation of Example 2.1 and consider the following partitions of
unity"

(a) The partitions of Example 2.1 with p 2, - 3.
(b) The partitions q= {0i} defined by 0i--/(XT-1, x/T), i= 1,’" ", m(T), where

x(a, b) denotes the characteristic function of the interval (a, b). Here we have
p=-=l.
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ERROR ESTIMATES 743

From

we obtain readily that

B (e, v) B (Uo t/o, v) Io (g t/ )v dx

2 I Yi+I

r/i [g-al2 dx in case (a),

2n Ig ao dx in case(b),

that is, r/ is the H norm of the residuals over supp fl. If is used, then the constants
(3.3c) are D Da and D Da 1 in cases (a) and (b), respectively.

Example 3.2. Consider the boundary value problem

-u"= g(x), Vx, (o, ), u(O)= u’()= o,

where again g EL2(0, 1). Let k k2 1, and Ha =H where H is the space of
Example 2.1. On H xH the bilinear form

B(u,v)=Io u’v’dx, uEH1, v6H2

is proper and we have C1-- 1, C2 (2/3)1/2. As before, if instead of H the space
with the norm (3.6) is used, then B remains proper on/- x/- but with C1 C2 1.

The family shall now consist of the pairs (V, V) where V is the space of
Example 2.1. Then B is uniformly -proper on H xH and/-) x/- with rl >- (2/3)1/2

and 1 1, respectively. The partitions of unity are chosen as in Example 2.1.
We determine the quantities r/i in the case of /-)x/-. For this let i, 1-< _<-

2re(T)- 1, be fixed and z the solution of the auxiliary problem

--Z"-- g(x), VX e (Yi-1, Yi+I),

Z(Yi-1)-- t/o(Yi-1), Z(Yi+I) t/0(Yi+l).

Then z-toGH(yi-1, yi+l) and

B(z-ao, V)=B(e,v),

whence

and therefore

Vv H (Yi-1, Yi+I),

IB(e,v)l
sup

vEH(Yi-I,Yi+I) IIvlI’
[(z ao)’]2

1/2

2 fYini [(Z ao)’l2 dx.

In this case we have D1 D2 1/2 and hence ’i represents the exact error on (yi-1, yi+l).
In general, it is, of course, not possible to determine the TJi exactly. However, the

last example already indicates that the Ti are determined by the solution of certain
auxiliary problems on the "small" domains fli. This, in turn, suggests that we may use
approximate solutions of the auxiliary problems to obtain approximations of the rti.
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744 i. BABUKA AND W. C. RHEINBOLDT

The theory in this section was based on the Sobolev spaces Hk(f). It is easy to
see that the results can also be generalized to other spaces, such as, for instance,
weighted Sobolev spaces, energy spaces, etc.

4. Finite element meshes and the admissibility of ’. In 2.2 we introduced four
conditions for the admissibility of the families - of triples (, T, V)on which the
results of 3 are based. As we saw in the various examples, the triples derive usually
from the finite element meshes under consideration and their corresponding element-
shape-functions. For families - of this type it tends to be fairly simple to verify the
first three admissibility conditions.

In the case of one-dimensional problems, the function in the fourth admis-
sibility condition can be derived easily by interpolation, and (2.10) follows if only the
ratio between the length of neighboring intervals is bounded. For higher-dimensional
problems, interpolation can no longer be used since there is no imbedding of HI(I)
into the space of continuous functions on . Nevertheless, under certain, standard
assumptions about the meshes, admissibility of the resulting families can be shown
for these problems as well.

The proof procedure is best explained on a specific example. For this we consider
the case of two-dimensional meshes of triangular, linear elements. It should be readily
evident how the approach extends to other more complicated situations.

Specifically, let 1 be a domain in R 2 with a polygon as boundary. We use set
partitions T of 1 into closed triangles "Yi, 1, , m (T), with the following standard
properties:

(i)

(4.1) (ii)

(iii)

The interior ’/’i of ?i, 1,..., m (T), is a nonempty subset of

re(T)
,1= U f.

The intersection of two nondisjoint, nonidentical triangles fi, ?i of T
consists either of a common vertex or a common side.

With each triangle ?i we associate two characteristic values, namely, the diameter
hi h0"i) and the modulus of the minimal angle ai a(-i). Then the partitions T of
the family - of triples are assumed to satisfy the following uniformity condtions"

(4.2)
(a) 0 < Oo (’r’i), V’riT

(b) 0<o<h(7"i)<i, V’ri, ’tie T,
h(’i)=

?, n ? # Q} V(1’, T, V) .
It is easily seen that (b) follows from (a).

Let T be any one of these triangular subdivisions of , and {x} c l=l the collec-
tion of all vertices of the triangles - of T. For any vertex x. we introduce the
continuous, piecewise linear function 4’" --> R such that 4,(x)= 6u. Then
represents a partition of unity of 1. Finally, let V c H H (fl) be the finite dimen-
sional subspace of functions spanned by all those i of which are zero on the
boundary. This completes the definition of the triples (q, T, V) of -.

THEOREM 4.1. The above family of triples is admissible.
Proof. From (4.2) (a) it follows that a vertex x/ belongs at most to u 27r/ao

triangles. Thus for any (q, T, V) - the overlap index p(D,) is bounded by this
number u and the first condition on - is valid.
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ERROR ESTIMATES 745

For any (, T, V) 3- we have supp 0 0 supp 6 for some /i, tj XI)’ if and
only if the corresponding nodal points x and x are vertices of the same triangle.
Hence the intersection index -(, 3-)cannot exceed -- 3. This proves the second
admissibility condition for 3-. The third condition follows immediately from (4.2) (b)
since all 0 are piecewise linear.

This leaves us with the fourth condition and the estimate (2.10). Because 1 is a
Lipschitzian domain, there exists a partition of unity of consisting of functions

Xi (), 1, , n, as well as a set of unit vectors p R,/" 1, n, such that
for any v H ()extended by zero to all of R:we have, with a suitable to > 0,

v (x + tp )= vi xiv, O <- <- to,

di(t) dist(0f, supp vi.t) >- dot, ]=l,...,n, do>O.

By standard arguments it then follows that

For given e > 0 we denote by vi.t the function obtained by averaging vi.t with a
convolution that has a kernel of the form Ix(x/e) and support in Ilxll< For e <-gl we
then have vi,t 6 H01 (f) and

-lily/tllnl(m(4.4)

Now specific values of and e have to be chosen. Any nodal point x O of a

partition T of belongs to u triangles of T, say, i), .., z. We define

i min {h (zi)), j 1, ,
and

/.)i] /’)]:/i, i ,Ax, t,-- iA2, ,A1 < (do/2)A2.
[i1

Here A2 is to be taken sufficiently small to ensure that for any x z the value vi (x)
depends only on the restriction of vi to the union of all ? in T for which ?l z .
It is easily seen that such A 1, 2 exist independently of the choice of T in 3-. Moreover,

til (x)= 0 for all x 6 0 and indices and ].we note that v
We introduce the functions

[i1 flA[/] [il
W] J" W] E

and estimate wi- vi. For this, let be a triangle of T with vertices x,, 1, 2, 3, and
let , be the corresponding functions associated with these nodes. Then it follows

from
3

i=1

Using Fourier transform theory we have

II1)i,t --ViIIHO(R2) IR ’210,0")12[(e’’- 1)/(t’r)] d’r

and since the function in square brackets is bounded we get (4.3) for 0. For s--1 the inequality is
obvious.
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746 I. BABUKA AND W. C. RHEINBOLDT

that on ’Tk

Since by (4.3)and (4.5)

(4.6)

3

i=1

<= csh 2k0-

we find, using (2.9), that

2 < (1-s)(4.7) IIw vj Ins(,k)= c6h 2 s O, 1.

Moreover, because the 4i are piecewise linear, it follows from the definitions of wj

and (4.4) that

(4.8) IlWi[[2H2(k) < c7h --2 Ilvil]2i_Ii(.,).

Now let be the piecewise linear interpolation function which is linear on each
triangle and agrees with wj at the vertices. Thus q 0 on OD, and

Ilw;-, csh s O, 1.

Therefore, from (4.7) and (4.8) we obtain

c9h E IIv;ll , (,,, s 0, 1,(4.9) IIv;- 2 (1-s)
" N’k

and because

(4.10)

the inequalities (4.9) and (4.10) together give (2.10). This completes the proof.

5. Computation of the /l and optimal mesh design. For the application of the
estimate (3.3), we need to compute the r/i. This depends, of course, on the selection of
the 4’i. If H2 is the space H(f), then the 4’i may be chosen as the characteristic
functions of the subdomains fl. But, in general, the matter is more complicated. Once
again, it will be best to discuss the main approach in the case of a special example.
There should be little difficulty in extending the techniques to other situations.

We consider the Poisson problem

(5.1) -Au g on f; u 0 on Of, g H(D.),

where, as in 4, 1) is a polygonal domain in R. The associated bilinear form

--+-- dx, VU H1, V H2,(5.2) B(u, 12)
OXl Ox1 Ox2

is proper on H1 H2 H (D). Moreover, if/ denotes the space H0 (D) with the
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(equivalent) norm

(5.3) Ilull-IB(u,

then B is also proper on/- x and the coefficients of (2.11) are C1 C2 1.
We proceed as in 4 and introduce the family of triples of Theorem 4.1. Hence

the partitions T of consist of the triangularizations of fl that satisfy (4.1, 4.2) and
with any nodal point x r of T we associate the continuous, piecewise linear function
with li(xlT.) 8i]. The support of ///i is then the union of all triangles of - which have
x/ as a node. The form (5.2) is uniformly -proper on/ /- for the family of pairs
(V, V), /(, T, V) , with constant ’= 1 in (2.14)(a).

Let to be the finite element solution of (5.1), (5.2) on a given mesh T of
triangular, linear elements. In order to compute a particular ’0i we solve the auxiliary
problem

(5.4) -zXw :g on "i--supp///i, W t0 on c"i.

Then it follows directly from the definition (3.3b) that

OX c3X2

Of course, in general, only an approximation w* of w can be computed. For this there
are many possibilities. For example, we may use higher order elements in f or
instead refine the mesh in fi by subdividing the existing triangles. Then by replacing w
in (5.5)with w*, we obtain an approximation r//* of rh. Note that the evaluation of
requires only the microstiffness matrices which were used in the computation of w*.

By our construction the approximation error r/-r/* is of higher order in the
mesh size than the error in the solution to. This is similar to the situation in the
approximate solution of initial value problems for ordinary differential equations by
multistep methods (see, e.g., [12]). This relates also to the value :(’) in (3.1) which,
of course, is not known either. Studies of various special cases indicate that (-) tends
to be reasonably small, provided the mesh ratio between neighboring elements is not
large.

In the present example the partition of unity consisted of the basis functions of
the mesh. There are numerous other possibilities for choosing . For instance, we
may define Pi as the base functions in the mesh obtained by subdividing all triangles of
T.

It is as yet an open problem how to construct partitions of unity which are
optimal both from the viewpoint of the error estimates and for the ease of computing
approximate values for the

The quantities r/, or, more realistically their approximations r/*, provide a
heuristic for optimizing the finite element mesh. Generally speaking, the problem of
designing an optimal finite element mesh for a particular problem is very difficult and
costly. From a practical viewpoint, there is no reason to make a large effort toward
optimizing the mesh exactly. Instead we need only seek for meshes which are reason-
ably optimal and for this heuristic procedures appear to be best suited. In principle,
this is the approach used in the case of ordinary differential equations (see, e.g., [13],
[14]).

Consider again the special problem (5.1) as discussed above. We restrict the
meshes of -by assuming the existence of a continuous function X" 13,--> R 1, 1 > X(x)>
0, with the property that for any H > 0 there is a partition T(H) of f into triangles
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748 i. BABUKA AND W. C. RHEINBOLDT

rk r with

(5.6) cIH min X(x)<=h(r)<-c2H rain X(x)

where h (.) denotes the diameter of the triangle. Then the errror e Uo- to satisfies
because of the piecewise linear elementsm

(5.7) c3H f X(x)q(x)dx <-llell1(m<-c4H f X(x)q(x)dx

with

( O uoq(x): (O---’] + 2\3X 3X! + (x]"
This suggests the heuristic assumption

(5.8) lie III , <m cH2 X(x)Zq(x) dx,

The number of elements N in the mesh satisfies

H small.

(5.9) csH- In g(x)-2 dx <-N <=c6H-2 II-I "’(x)-2 dx.

Hence corresponding to (5.8) we introduce the further heuristic assumption that

(5.10) N -t?H-2 In X(x)-2 dx.

Now we should minimize (5.8) subject to the constraint that the number N of
(5.10) is fixed. By the usual Lagrange multiplier approach this results in

nx(x):,q(x)-1/4

or

(5.11) Ilell’(,) gH4x(x)4q(X const.

Therefore, we obtain an almost optimal mesh if the errors in the energy norm will be
approximately equal for all elements.

Earlier in this section we specified r/i by (5.5), that is, by

"i "--Ila0-- will,q<a,)

where fi is the union of all elements with the common node x f. Thus we have

re(T) re(T) re(T)
2 2 ^2

i=a i=a x =

2 2(5.12) 2 Ilao-w,l[m , , /’=1,...,re(T).

This suggests that we associate the number (5.12) with each element ri of the (current)
triangulation. Then we may expect that the mesh is approximately optimal if the values

i are nearly equal. In practice, of course, only approximations of ri and hence i are
known.

with
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6. Computational details and results. As mentioned in the Introduction, our
a-posteriori error estimates allow not only for an assessment of the reliability of the
results of a finite element computation but also for the design of adaptive mesh
refinement procedures. For the latter we apply the theory of the previous sections to
families of partitions of the domain which are generated from some prescribed basic
partition by repeated application of a specific refinement procedure.

As before we proceed by discussing a typical example. Consider the Cauchy-
Riemann equations, that is, the system of Petrowski type,

(6.1)

Ox2

on the L-shaped domain in R 2

(6.2)

Then

(6.3) ul=g on

represents a complementary boundary condition of (6.1). We choose g such that the
exact solution becomes

r2/3 _r2/3u sin 32-@, u2 cos @ + c

where (r, ) are polar coordinates in R 2. Note that the solution of (6.1), (6.3) is unique
up to an additive constant in u2 which we fix such that

(6.4) a u2 dx 0.2

With our problem we associate the bilinear form

+ -+0x 
which is proper on H x H2 where Ha H()xa(), H2 H()xH(), and
D(fl) {u e H(fl); a u dx 0}.

We shall use square, bilinear elements. For this the family of admissible partitions
T of is defined recursively by the following two rules"

(a) The partition consisting of the three congruent squares of (6.2)with
sidelength is an admissible partition.

(6.6) (b) If T is an admissible partition of , then a new admissible partition is
obtained by dividing any square of T of sidelength, say, h, into four
congruent squares of sidelength h/2.

A sample partition is shown in Fig. 1.
With each partition T we associate subspaces VI,lCH (), Va.2 Ha() of

functions which are continuous on and bilinear on each square of T. Then the form
(6.5) is uniformly -proper on the family of space pairs (V1, V2) where V

For the computation it is more advantageous to normalize the approximate solution such that
U2(0 0)-" 0.
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23 z4_25126,.
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16
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FIG.

VI,1 x V1,2, V2-- V2,1 x V2,2 and

OUl OU2
g21 U

OXl OX2
Ul V1,1, u2 V1,2 }

cqul 0/12
V22-- u -ff-; u1 V1,1, u2 V1,2

Ox2

If we complete the definition of the family of triples 3- by using as partitions of
unity the characteristic functions on the squares of the subdivision, it follows that all
conditions of our theory hold and Theorem 3.2 is valid. Moreover, we find that on
each square zi of a subdivision T

(6.7) 12, Ia (R2 +R) dx

where Ra and R2 are the residuals for the particular finite element solution. Thus in
this case the computation of the r/-values is particularly simple, but our discussion
does not depend on this.

Let T be any mesh obtained in the refinement process; for instance, T may be
the starting mesh (6.6a). We compute the finite element solution on Tt, and the
corresponding rt-values (6.7). These rt-values identify which of the elements should
be subdivided. In line with the conclusions of the previous section, we wish to keep the
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ERROR ESTIMATES 751

rt-values as close together as possible. For this we use a simple heuristic prediction
scheme to forecast what may happen to the ,/-values if an element is subdivided.

Suppose that locally the ,/-values have an asymptotic behavior of the form

(6.8) rl =chX, as h + 0

where h is the characteristic size of the element. If any element ri with corresponding
,dvalue rti was generated by subdividing an element in a prior mesh with value rt then

(6.8) suggests that the (worst) r/-value after dividing r will be approximately

(hi)
(6.9) rti old"

Practical experience has shown that, in general, this prediction can be expected to be
rather satisfactory.

Clearly now, we should refine only those elements in rk which have an ,/-value
above the largest predicted new rt-value in the next mesh. In order to start that
process, the first step should consist in the refinement of all elements of the basic
mesh. In algorithmic form this scheme can be written as follows:

1. cut := 0
2. If "current mesh Tis the basic mesh" then go to 4
3. For "each element r in T" do

3.1. Compute r/
3.2. If r/ > cut then cut := r/

4. For "each element r in T" do
4.1 If r/> cut then subdivide r and for each new

oldelement set rt := rt

We shall not discuss here any further implementation details.
At each level the resulting mesh is approximately optimal in the sense of 5.

Hence the process may be stopped with any mesh. As a stopping criterion we can use
either a desired accuracy, Ilell =< tolerance, or a prescribed maximal computational cost
(see 15 ]).

As an example of the procedure, Fig. 1 shows a mesh obtained after several steps
for the above sample problem. The corresponding rt-values are given in Table 1. In
order, the ten largest r/-values are associated with the elements

31, 25, 24, 27, 3, 5, 2, 38, 10, 1

while the predicted new r/-values for the first three of the elements turn out to be

0.204(-1), 0.204(-1), 0.177(-1).

The above algorithm determines that the "cut" is at 0.204(-1) which means that the
first nine of the indicated ten elements should be subdivided.

Under the heuristic assumptions of the previous section we obtain in this case

lim h (rff) h (x 1, x2) const, r-z/3
H0

The curve const Ix[2/3 compares well with our computed distribution of h-values along
the x-axis in f.

As another example, we consider the two-point boundary value problem

(6.10) -u"+u =F(x), 0<x<l; F(x)=-xt+/3*x +2, /=
(/3 + 2)(/3 + 1)’
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752 I. BABUKA AND W. C. RHEINBOLDT

TABLE

Element " Element

0.170(-1) 13, 17
2,5 0.210(-1) 14,29
3, 27 0.220(-1) 15, 34
4,38 0.167(-1) 16,37
6 0.147(-1) 18

7, 11 0.133(-1) 19, 23
8,28 0.137(-1) 20,30
9,36 0.140(-1) 21,32
10,39 0.207(-1) 24
11 0.133(-1) 25,31
12 0.951(-2) 26,36

o.825(-)
0.883(-2)
0.895(-2)
0.134(-1)
0.611(-2)
0.522(-2)
0.551(-2)
0.594(-2)
0.287(-1)
0.296(-1)
0.582(-2)

with the nonzero boundary conditions

(6.11) u(0)= 0,

Obviously, for/3 >-2 the exact solution is

(6.12)

The associated form

(6.13)

u(1)=/.

B(u, v)= Io (u’v’ + uv) dx

is proper on H (0, 1)x Ho (0, 1). We proceed as in Example 2.1 and use piecewise
linear elements. But, for simplicity, we consider the partitions of unity {0i} consisting
of continuous, piecewise linear functions 0i with Oi(xj) 6i, i, j 0,. , re(T). In this
case we have

2 2 [x,+, )2(6.14) q2i ’0,0 "1-,1, nl [(Zi--a’O +(Z,--t0)2] dx, /=0, 1,
"Xi_

where zi is the exact solution of (6.10) on (xi-1, Xi+l) such that

Zi(Xi-l+2l)-- ao(Xi-l+2l), O, 1.

These zi may be computed approximately as finite element solutions on the mesh

Xi-1, 1/2(X/- -- Xi ), Xi, 1/2(X, "at- Xi+1), Xi+1

with the same type of elements. By replacing the zi in (6.14) with these results we
obtain rather satisfactory approximations of the r/i. Moreover, we find, as expected,
that r/i,1 @ r/i+1,0, so that any interval contributes to r/ about twice the same amount.
Hence it is natural to associate with [xi, Xi+l] the average i =1/2[r/il+r/i+l,0]. Some
numerical results are summarized in Table 2 below. For each level we give the
partition points xi, the lengths hi of the intervals, and the corresponding values ri. The
above refinement algorithm was used. The last level also includes the function

--2B/3h(x)=x

computed at the midpoints of the intervals. This represents the asymptotic step-
distribution for this example.

For additional results in the one-dimensional case see [16].
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ERROR ESTIMATES 75 3

TABLE 2

xi hi i xi hi i xi hi i

0 0 0
1/4 6.9(-2) 1/8 3.1(-2) 1/16 1.3(-2)

1/4 1/8 1/16
1/4 5.8(-2) 1/8 2.6(-3) 1/16 1.1(-3)

1/2 1/4 1/8
1/4 2.3(-3) 1/4 5.8(-3) 1/8 2.6(-3)

3/4 1/2 1/4
1/4 1.3(-3) 1/4 2.3(-3) 1/4 5.8(-3)

3/4 1/2
1/4 1.3(-3) 1/4 2.3(-3)

3/4
1/4 1.3(-3)

4

xi hi li xi hi (li xi hi i hasy

0 0 0
1/32 5.7(-3) 1/64 2.5(-3) 1/128 1.1(-3) 0.78(-2)

1/32 1/64 1/128
1/32 4.8(-4) 1/64 2.1(-4) 1/128 9.2(-5) 0.15(-1)

1/16 1/32 1/64
1/16 1.1(-3) 1/32 4.8(-4) 1/64 2.1(-4) 0.23(-1)

1/8 1/16 1/32
1/8 2.6(-) 1/16 1.1(-3) 1/32 4.8(-4) 0735(-1)

1/4 1/8 1/16
1/4 5.8(-3) 1/8 2.6(-3) 1/16 1.1(-3) 0.52(-1)

1/2 1/4 1/8
1/4 2.3(-3) 1/8 9.9(-4) 1/16 4.4(-4) 0.71(-1)

3/4 3/8 3/16
1/4 1.3(-3) 1/8 5.4(-4) 1/16 2.4(-4) 0.87(-1)

1/2 1/4
1/4 2.3(-3) 1/8 9.9(-4) 0.11

3/4 3/8
1/4 1.3(-3) 1/8 5.4(-4) 0.13

1/2

3/4

1/8 3.4(-4) 0.15

1/8 2.4(-4) 0.17

1/4 1.3(-3) 0.20
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