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THE p-VERSION OF THE FINITE ELEMENT METHOD*

I. BABUSKAT, B. A. SZABO} AnD 1. N. KATZ§

Abstract. In the p-version of the finite element method, the triangulation is fixed and the degree p, of the
piecewise polynomial approximation, is progressively increased until some desired level of precision is
reached.

'In this paper, we first estabiish the basic approximation properties of some spaces of piecewise
polynomials defined on a finite element triangulation. These properties lead to an a priori estimate of the
asymptotic rate of convergence of the p-version. The estimate shows that the p-version gives results which are
not worse than those obtained by the conventional finite element method (called the k-version, in which A
represents the maximum diameter of the elements), when quasi-uniform triangulations are employed and the
basis for comparison is the number of degrees of freedom. Furthermore, in the case of a singularity problem,
we show {under conditions which are usually satisfied in practice) that the rate of convergence of the p-version
is twice that of the h-version with quasi-uniform mesh. Inverse approximation theorems which determine the
smoothness of a function based on the rate at which it is approximated by piecewise polynomials over a fixed
triangulation are proved for both singular and nonsingular problems.

We present numerical examples which illustrate the effectiveness of the p-version for a simple
one-dimensional prablem and for two problems in two-dimensional elasticity. We also discuss roundoff error
and computational costs associated with the p-version. Finally, we describe some important features, such as
hierarchic basis functions, which have been utilized in COMET-X, an experimental computer implemen-
tation of the p-version.
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1. Introduction. The finite element method, one of the most widely used numeri-
cal methods for solving certain types of differential equations, is based on approximat-
ing the solution by piecewise smooth functions, specifically polynomials, on convex
subdomains such as triangles. In general, the degree of the polynomials is fixed at some
arbitrarily chosen low number. No consensus exists at the present time concerning the
most suitable (optimal) degree p of the polynomials,

The mathematical justification of the finite element method is based on asymptotic
analyses in which p is kept bounded and the diameters of the element subdomains
approach zero, However, it has been observed by several investigators that the sizes of
elements used in practical computations are often outside the range of asymptotic
behavior.

Because the maximum diameter of finite elements is usually denoted by A, we shall
refer to this (conventional) approach as the A-version of the finite element method.

From the theoretical point of view, one can justify the finite element method, also
in the asymptotic sense, when the subdomains are kept constant and the degree of the
approximating polynomials tends to infinity. We shall refer to this method of approxi-
mation as the p-version of the finite element method.

The p-version of the finite element method is similar to the Ritz method, but there
is one very important difference. In the p-version of the finite element method, the
domain of interest is divided into convex subdomains and the polynomial approximants
are piecewise smooth only over individual convex subdomains. In the Ritz method, on
the other hand, the solution over the entire domain is approximated by smooth
functions. This difference accounts for the greater versatility and higher rate of
convergence of the p-version of the finite element method over both the Ritz method
and the h-version of the finite element method, as demonstrated here.

In this paper, we analyze the p-version of the finite element method and its theory,
and discuss the implementation characteristics of the method based on the computer
program COMET-X, developed during the last few years at Washington University in
St. Louis. We also examine the potential for further development of the p-version. We
remark, from the computational point of view, and from the point of view of the
architecture of the computer program, that there are significant differences between
the p-version when p is in the range of 6, 7, 8 and the h-version when p is in the range

1,2,3.

We present a proof for the rate of convergence in the p-version and show that the
polynomials are able to “absorb” singularities, including for example, corner singulari-
ties, when they are located at the vertices of triangles. This does not occur when the
corner singularities are not located at vertices.

Comparison of the asymptotic behavior of the h-version, based on uniform or
quasi-uniform mesh refinement on one hand, and the p-version on the other, the basis
of comparison being the number of degrees of freedom, shows that the rate of
convergence of the p-version cannot be slower than the rate of convergence of the
h-version. Furthermore, when corner singularities are present at vertices, the rate of
convergence of the p-version is exactly twice that of the k-version.

2. Basic notation. Throughout this paper, R> will be the two-dimensional Eucli-
dean space {(x1, xz) = x|x1, x,€ R} and Q<= R? will be a bounded domain with a
piecewise smooth boundary (). In particular, we will deal with polygonal domains. (We
exclude, for technical reasons, the slit domain, although the resuits of this paper can be
generalized to this case with some, but not essential, technical difficulties.)

Z(Q)) shall be the space of all real C™ functions on  that allow continuous
extensions of all derivatives to {). All functions in €({}) that have compact support in Q
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form a subspace @(Q)< #(Q). As usual, Lo(Q)=H%Q) will be the space of all
square-integrable functions un {) with the following inner product;:

{1, v)o.a =J ut dx, where dx =dx, dx»,
a

and the corresponding norm || [lo.o. In addition, for any integer kK =1, the Sobolev
spaces H *(Q) (respectively H¢ (1)) will be the completions of ({}) (respectively Z(£))
under the norm

”u”i.n: ) Il@“uilﬁ.n,
0=|a|=k
where for each multi-integer {1, a2), we have let |a| =, + @ and
a‘a[
The standard inner product in H () will be denoted by { -, * ). For nonintegral &k >0,
the spaces H “(()) and HE(Q) are defined by usual interpolation procedures. More
precisely, for k = ko+ 6, where 0< 8 <1, we let H* = [H ™, FF**' ], , applying the usual
K -method of interpolation. (For more information see [7].) (We note that H *=B%,,

where B5 . is the usual Besov space.)
For p >0, we let

Q(p) ={(x1, x2)llxs| < p, x2| <},
é(P) ={(x1, x2)10<x1 <p, 0<x2<p}l,

and by Zper(Qp)) = €(Q(p)), we denote the space of all functions of period 2p on

Q(p), and by Hier (Q{p)), its closure in H*(Q{p)).
We will deal also with Sobolev spaces in one dimension. We let

I(p) = {x4|lx:] < p},

and we define H*(I(p)), Ht (I {p)), HEer (I(p)) as above.

We also need to introduce the space 2,(Q) = £(Q) of all algebraic polynomials of
degree not higher than p and %,(Q(p)) (and Z,(I(p)), the space of all trigonometric
polynomials of degree at most p {and period 2p).

3. The concept of p-convergence of the finite element method.
3.1. The model problem. We will be interested in the following model problem:

(3.1) —Au+u=f onQy [feH(W),
(3.2) IF'u=0 onal,

where (), is a bounded polygonal domain and I'u = 1 or I'u = du/dn. We can easily
generalize our results to other boundary conditions. As usual, we will interpret the
problem (3.1), (3.2) in a weak sense; namely, we seek a uoe H 8(Q0) (respectively
uoe H'(Qo)) so that

(3.3) B(uo, v)=(f, v)oq, forallveH§Q) (respectively v € H'(Qo)),
where we have used the notation
(3.4) Buo, v) = (uo, ) 1.0,

A ug, satisfying (3.3) obviously exists and is uniquely determined.



Downloaded 12/04/25 to 128.62.208.154 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

518 I. BABUSKA, B. A. SZABO AND 1. N. KATZ

3.2. A description of the p-version of the finite element method. Let & be a
(fixed) triangularization of (. Thus ¥={T;} for i=1, -+, m, where each T; is an
{open) triangle, where U :’1:1 T: = 0y and where each pair T, ’1‘_",-, i #J, have either a
common (entire) side or a common vertex or are disjoint; that is, T:N T_’, = . Let
P (Q9) = H () denote the subset of all functions u € H({}o) such that if #,q, is the
restriction of u on T}, then we have ur, € P,(T}); that is, @E,y](ﬂo) consists of all
functions in H ' (€e) which are piecewise polynomials of degree at most p. Furthermore,
let P55 (Q0) = 2LV (Q0) N H (o).

The concept of the p-version of the finite element method consists of finding a

U, € @Eﬁ?(ﬂo) (if the Dirichlet problem is under consideration) or a u, € .OJ’E;{’O] (20} (if the
Neumann problem is under consideration), foreachp =1, 2, - - -, so that (3.3) holds for

all v in the appropriate space.

Study of the p-version of the finite element method was initiated at the School of
Engineering and Applied Science of Washington University in St. Louis [25]in 1970. It
has been implemented there to study various aspects of stress analysis and has shown
very good results, particularly in connection with linear elastic fracture mechanics.
Development of the p-version is continuing at the Center for Computational Mechanics
at Washington University.

3.3. The basic approximation properties of .@L‘?](Qo) and 9:,{';](00).
THEOREM 3.1, Let u e H(Qy). Then there exists a sequence z, € Q"[,‘f](ﬂu), p=
1,2, -, such that for any 0= =k (I, k not necessarily integral),

3.5) ll = zplli00 = Cp ™ et i20

where C is independent of u and p. (C depends, for example, on [ and k.)

Proof. The proof is standard. We first prove (3.5) for integral [ and k. We will
construct a specific z, € #,({},) so that (3.5) is satisfied,

Choose py > 0 so that {3y < Q(py). Because (X is a polygon, it is a Lipschitz domain
and thus, there exists an extension U € H*(Q(2po)) of u such that supp U < Q(3po) and
such that

(3.6) 111k, 0200 = Cllull oo

where C is independent of u. As usual, we have that U/ = Ty, where T is a linear
mapping of H"()y) into H(Q(2po)) (see, for example, [24]), which also maps H*(Q0)
into HH*(Q(2py)).

Now let ¢ be a (one-to-one) mapping of Q(r/2) onto Q(2p.) defined by the
foliowing:

(3.7} x =®(£) =2pe(sin £, sin &),
Let

V()= U(®(£)),
and let
00 {of3)]<of
where &'~ denotes the inverse of ®. We note that
3.9) supp V< Q.

Obviously, ® is a regular, analytic, one-to-one mapping of Q onto Q(3po). If we regard
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& as a map from Q(#) onto Q(2py), V = U(D) e Hie, (Q(m)) is symmetric with respect
to the lines & = £ /2 for i =1 or 2 and (3.6) and (3.9) show that

(3.10) [Vlleoum = Cllullkoo

It is well known that the partial sum ¢, of the Fourier series of V gives a sequence
of trigonometric polynomials ¢, € #,(Q{)) which satisfy the following, for integer
kz=iz=0:

[V -tlom= Cp~* N V.ot
= Cp ™ ulk

Each ¢, has the same symmetry as V' with respect to the lines & = £ #/2,fori=1or 2.
Thus, it is readily seen that ,(£) = z,(®(£)), where z, is an algebraic polynomial of
degree not higher than p. Because ® is a regular, analytic map of O onto QGpo), (3.11)
yields (3.5) for integer [ and k.

We now generalize our result to nonintegral [ and k. Recall that for a given (fixed)
p, the polynomial z, was constructed using a linear map L,. Infact, L u = z,, where L, is
a linear map of H ({}y) into #,({}) that satisfies (3.5) for integer { and k. If we now
apply general interpolation theory, we obtain (3.5) forall 0 =l=<k.

The proof of the next theorem is more complicated.

THEOREM 3.2. Let ue H Q)N HYQ). Then there exists a sequence z,€
?)"E,‘%] (Qq), for p=1,2, -+, such that for any k > 1 {(not necessarily integral) and any
e >0, we have

(3.12) 2 — zoll1.00 = Cp ™70 el a0

where C is independent of p and u. (C depends, for example on £ and k.)

Remark 1. In contrast to Theorem 3.1, Theorem 3.2 is false if %,q({)o) is
considered instead of PLg (o). This is easy to see if Qo is, for example, the L-shaped
domain shown in Fig. 3.1.

(3.11)

A Xz

_XV

N

F1G. 3.1. Ar L-shaped domain.

In fact, any u € P, 0(Q) is zero on {(x1, 0)[0<x; <1} and therefore, because it is a
polynomial, it has to be zero on the entire set {(x;, 0)| — 1 < x; < 1}. This, of course, leads
to a contradiction because of Sobolev’s embedding theorem of H 2(Q0) into H(I(1)).

Remark 2. It is not clear whether the term £ in (3.12) can be removed.

Remark 3. The theorem can be stated more generally. We have restricted
ourselves to proving estimates in the |-||1 o -norm only because it is sufficient for our
purpose.

We will state a lemma before proving Theorem 3.2.
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LeEMMA 3.1. Let S be a triangle with vertices A, i = 1,2, 3, and sides s, i =1,2,3, as
in Fig. 3.2.

[aX]

F1G. 3.2. The typical riangle.

Let ve P,u(s1). Then there exists a V € P,(8) such that V=0o0n s; and s3, V=vons,
and

(3.13) [V = Cllvlh.s,,

where C (dependent on S) is independent of v and p.

Remark. By ve P,q(s1) we mean, of course, a polynomial in a single variable on s,
that vanishes at the end points of s}, i.e., at the vertices A,, Aj.

Proof. Without any loss of generality, we can assume that § is the triangle shown in
Fig. 3.3 with vertices (0, 0), (1,0), (1, 1).

'

A, Az
(0.0} Sy 1100

F16, 3.3. The standard triangle.

Then, s; = {{x, 0)|0 < x; < 1}. Because v{x) is a polynomial and because ¢ (0} =v(1)=0
by assumption, we know that

v(x1) = x1(1 —x)v1(x1),
where v{(x{) is a polynomial of degree at most p—2, Let

(xy—x2)

X1

(3.14) V)= Vixy, xz)=v(xy)

Obviously, Ve #,(8), V=0o0n s, and 53, and V = v on 5,. Since x,/x, is bounded on S,
we find that ||V|o.s =!|v]l: 5,. Moreover, since
2 1 2

v !
J (_) dx1 dX2 =J dX2 j (ﬂ) dx;,
s \ox; 0 xz 2OX;

we obtain (3.13) upon observing that v>(x,) = x,fjoi.,.
We can now prove Theorem 3.2.
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Proof of Theorem 3.2.
1) Let k >2. By Theorem 3.1, there exists a z, € #,{{)) such that

(3.15) = 2,lle00 = Cp ™  Mutlleq, fori=k.

Let {xm},j =1, -+, s, be the set of all the vertices of the triangles T; ¢ & belonging to
8Q,. Because H'* (Qp), where ¢ >0, is embedded in the space of continuous functions,
we can obviously modify z, by subtracting a polynomial 7 of fixed degree py = r#t and
obtain a z} € #,(0,) that vanishes at the points {x"'"} and satisfies the following:

(3.16) I =25 lhaa= Co™ " +p ™ Nl

where & > 0 is arbitrary. Of course, £ =z, —z} is a polynomial of fixed (independent of
p) degree py determined by the values {z,(x “h}. Since Theorem 3.1 shows that
|2, (" = Cp* V" ||tk 1y, it FOHOWS that ||F]| 0, = Cp~ %V for all 0= = . Then,
because |£]|..0,= |Z|ls.q, for any r = 41, (3.16) follows readily.

Since u =0 on every side s = 8{), of some T € ¥, we have |z3 )], =|u — 2} 2.0, by
applying the Sobolev imbedding theorem. Thus, we can use Lemma 3.1 to find a
7 e 97’,[;}] (£20) such that zg = zﬁ —z¥* e g’%}(ﬂo) and
(3.17) = 25lh.00= Cllu — 25 l2.0,= Cp ™ atllcos
where C depends on k > 2 but is independent of u. Note that we can rewrite (3.17) as
follows:

(3.18) e =z lh.00= Co™ 7P E P lulig g,
2) Now let R, be the orthogonal projection in the scalar product of H' of
H Q) NH§)  onto P55 (o),
and let z, = R,u. We obviously have
(3.19) lzo = telir.0 = lleell1. 00

and, from (3.18), we have the following for k >2:

(3.20) Iz, = ully.0,= C kY~ E D iy g,
Now let
(321) HS(QO)=[H(1},Hk(no)nHé](s.—l)j(k__])yz forl<s<k.

Standard interpolation results imply that the following holds for 1 <s <k;

(3.22) lzp — tlhh.0, = Ck, )p™"||utl| 7oy forallue H*(Q0),
where

1 s—1 1
(3.23) ”‘_(kfl)(lfk—l)(kﬂ)_(“1)(1‘%1)‘
Thus, given some £ >0 and some s > 1, we can select a ko> 1 so that

1

3.24 —1(1———); —1)—e,
(3.24) (s-1) kool (s—1)-¢

and obtain (3.12), at least with |lu 5+, replacing ||l a,. But since the spaces H * (o)
and H" (o) N H} are equivalent when () is a polygonal domain (see [3], also [29]), the
proof is complete.
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3.4. Inverse approximation theerems. We have proven theorems about the
approximability properties of the following spaces:
P00 and 2L Qo).

Now we will prove some inverse approximation theorems.
THEOREM 3.3. Letv e Hk(O(p)), where k =0 is integral and suppose there exists a
sequence of polynomials z,€ P,(Q{p)), p=1,2, - -, such that

K
(3.25) ilv —Z‘,“k,o(p)ég; for r >0,
Then ve H*"""*(Q(p*)), for any 0<p*<p and £ >0 and the restriction of v onto
Q(p™), satisfies the following:
(3'26) il v”k-!rr*s,o(p*) éA(P: p*s k; r, E)[nvllk,o(ﬂ)-'_K]'

Proof. Let w =(x1—p)) " (x3—p")**" and set v* = vw, 25,4042 = 2,0, V*(£)=

v*(d(£)) and
t¥ vas () = 2 5 ragern) (D) € Fpragen (Q(m)),

where
D(¢) =x = p(sin £, sin &).
Since
CK
(3.27) [V*—thansz (f)”k,ow)é?,

it follows from [17, Theorem (5.4.1)] that
V¥ ksr—c.oom = AV lkom+ K.

{For a direct proof using interpolation theory, see, for example [3].) (In fact, the
aforementioned theorem provides an estimate for the norm of V¥ in the Nikolsky space
B4 (Q()). This norm majorizes the norm || |lx+—c.o0m.)

Now, using the facts that the mapping @ is one-to-one analytic on Q{p*), and
w(x) > a > 0 for some a > 0 on Q(p*), we immediately obtain (3.26). Inequality (3.25)
holds only on Q(p*) and is not in general true on Q(p). Nevertheless, we can prove the
next theorem.

THEOREM 3.4, Let v € H*(Q(p)) and suppose that the remaining assumptions of
Theorem 3.3 are safisfied. Then v eHHr’IZ_E(O(p)) for any £ >0 and

{3.28) o]l +r72-e.00 = A e M|vllkow + K.

The proof of this theorem is again a consequence of Theorem 5.4.1 of [17],
provided that the following inequality of Bernstein type holds for each integer k = 0:

(3.29) Izol . 0tor = CP* b ll0.0(025

for all z, € #,(Q(p)), where C is independent of p and z,.

Let us remark that in the case of trigonometric polynomials, (3.29) holds with pk
replacing p**. We will prove (3.29) in the next few lemmas.

LEMMA 3.2. Let z,(x) be a polynomial of degree p in one variable. Then

5
d’z
5

(3.30) | I

=C()p™|zllo.r
o.r
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Proof. By Schmidt’s inequality, we have

+1

+1 4
(3.31) L Py dxé(—N—%l)r—J. £x) dx,

for polynomials f of degree not greater than N (see [6]). The result is now easily
obtained.
LEMMA 3.3. Let z,(x) e P,(Q(1)). Then for each integer k Z0 we have

(3.32} lzollk. 0ty = C R |z, llo.00>-

Proof. For each fixed x,, we have z,(x,, x2) € #,(I). Thus, Lemma 3.2 implies that

+1 2 +1

d
(3.33) I [ﬁﬂ(xl, xz)] dx1 = Cp* I 22 (51, x2) dixs.
-1 6X1 -1
If we now integrate (3.33) with respect to x;, we find that

(3.34) 9%y

= Cp2|Ezp|10.0(1)-

dxilo,o)

Since a similar estimate holds for dz,/dx,, (3.32) follows by induction. Since (3.32) is
equivalent to {3.29), Theorem 3.4 is now proven.

3.5. Convergence results for the p-version of the finite element
method. Theorems 3.1 and 3.2 lead immediately to the following a priori estimate of
the rate of convergence of the p-version of the finite element method.

THEOREM 3.5. Let uye H"(Q0), where k =1, be the solution of the problem (3.1)
and (3.2) and let u, be the finite element approximation. Then

(3.35) llto = tholl1.000 = C e, £)p ™ 7 |lutoll 20

for any e >=0. If the Neumann boundary conditions are under consideration (that is,
I'=au/an), £ can be taken to be zero.

A polynomial of degree p has N degrees of freedom, where N =~ p”. Thus, #5]
(and QDE’S]) is of dimension N, where N = pz, and hence (3.35) can be rewritten in the
following form:

(3.36) 40~ tip)l1.00 = Clk, €N~ 2 luglle e

For the conventional finite element method (s-version) on a quasi-uniform mesh,
we have

(3.37) llto = unlis.00 = Ch* 1ol .00

where u =min (k — 1, g) and where g is the degree of the complete polynomial used in
the elements, Since in this case, the number of degrees of freedom N satisfies the
relation N = h 2, we can rewrite (3.37) in the following form:

(338) Huo - uhlll.ﬂo = CN_“ﬂ“ung,gﬂ.

Note that the convergence rate expressed by (3.38) is optimal (up to, perhaps, an
arbitrarily small £ > 0; see [3]). Thus, the p-version gives results which are (neglecting a
possible & > 0) not worse than the conventional k-version on a quasi-uniform mesh if
we are comparing the number of degrees of freedom that are required to obtain a
certain accuracy. In addition, the p-version convergence can be much better as there is
no restriction on its convergence rate due to an upper bound on the degree of the
polynomials.
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We will see in the next section (see Theorem 4.3) that, under some conditions
which are usually satisfied in practice, the factor 3 can be removed from the exponent in
(3.36). Thus, under these conditions, the p-version will be superior to the usual
h-version of the finite element method on a quasi-uniform mesh. However, let us
remark that when the usual s-version of the finite element method is used with the
proper refinement of elements, then the convergence rate of the h-version can be better
than that of the p-version on a fixed mesh (see [3]). Although the general theory for a
method combining the 4 and p versions is not yet developed, we can expect that the
theoretical and practical advantages of both approaches can be combined.

Let us now assume that the convergence rate of the p-version of the finite element
method is some r >0, that is, assume that

(3.39) o= wpll1,0, = Kp ™"

Then the following theorem holds:
THEOREM 3.6. Let uye H'(Qy) and suppose that (3.39) hol_ds. Then:
(i) uoc H'77°(QOF) where QF is any domain such that Q* < T, for some i =

1, -+, m, where T, are the triangles of the triangulation & and

(3.40) letollisr—c.0n = A, 1, £)(luollL00+ K.
(i) uge H'7"*7*(T)) foreachi=1, -, mand

(3.41) lttohssrra-em, = A(T, 1, £)(|tel]1.0,+ K).

Proof. Theorems 3.3 and 3.4 are obviously valid not only for a rectangle Q but for
any parallelogram.

(i) From Theorem 3.3, we see that (3,40) holds for any 0¥, that is, of the form of a
parallelogram. It is now an easy matter to obtain (3.40).

(ii) Since any T; can be covered (with overlapping) by a finite set of parallelograms,
{3.41) follows directly from Theorem 3.4,

The practical importance of Theorem 3.6 lies in the observation that the tri-
angulation of O has to be constructed so that possible singularities of i, are located on
the boundaries of the triangles. This was done exactly in the linear elastic fracture
mechanics problems analyzed by Szabo and Mehta [26] using the p-version of the finite
element method.

4. The singularity problem and the p-version of the finite element method.

4.1. Preliminaries. In this section, we will write @ instead of O(1). Q(p) was
defined in § 2. Let T} be an open triangle with a vertex at the origin and suppose that
Ti= O(1/3)U(0, O) (see Fig. 4.1).

t Sz, Sa

V3 .
Lﬁ‘/a—- ’ Jx’

FIG. 4.1. Triangle with a vertex at a singularity.
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We will denote the sides of T' meeting the origin by s; and s, and the remaining one
by s;.
We now define a mapping & of Q(m/2) onto 0. Let

d(¢)=x =(sin® £, 5in” &) forall £=(¢;, &) é(g)

Let &' denote the inverse of ® and let
T =&"(T), sP=® (s fori=1,2o0r3.
T? is a curvilinear triangle with smooth sides and positive angles. In fact, the line

X2 = ¢x; (0 < ¢ <o0) will be mapped into sin” & = ¢ sin” &, or

1/2

£x=arcsin ¢ ' sin &;.

Thus, T% is a curvilinear triangle and T < G(po) U (0, 0) where po = arcsin (1/+3). It
can be seen easily that sin 2£,/sin 2, is a function bounded above and below on T,
Now let v e H'(T) be given and set

V) =o(d().

We have the following:
LEMMA 4.1, Letve H(T). Then Ve H(T") and

(4.1) cilloll,r EIVILrescdivlln

where 0 <X ¢ << ¢y <00 are independent of v.
Proof. We will first show that

4.2 VI . fori=1or?2.
(4.2) Bx, 0T “agll, T“’ dx;llg
We have
duv dx; ov
()= — = =—(D in 2&;.
p & (6) ox, 9F. axi( (£)) sin 2£,
Therefore,

av 2 av 2 2 dxy dxg
& = (22} sin?og -2 .
L(n(ag,-) dé, dé L(ax,») SN 24 22 sin 25,

Since sin 2£1/sin 2£; is a function bounded from above and below on T, we obtain
{4.2). We now observe thatif 1 =p, g <o and 1/p+1/q =1, then

dx1 dXQ
2 - 2____—
Lm vidi L” sin 2£, sin 2&,

2 1/p, 1 1 q /g
< .
*[L” dx] [J‘T(sinZ&Sin 252) dx]
1/2 —-1/2

Note that since &==x;’" in a neighborhood of the origin, we have 1/sin 2§, =x;
Therefore, the second term in (4.3) is bounded if p =3 and ¢ = 3/2. On the other hand,
by the Sobolev embedding theorem, we have

1/3
“ v° dx
T

(4.3)

=Clloll.
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Thus, it follows that
1/2
44) [ vae  =Clolhr
o
This estimate and (4.2) show that
IVl re=Clolx
Since (4.3) also implies the following,

lolo.r =| Vo,

we can easily complete the proof of the lemma,
LEMMA 4.2. Suppose that v(x) is a function of one variable defined for 0<<x <1
which satisfies the following:
2

1 1
(4.5) J‘ p2x! dx+_[ (@) xdx=A <.
0 0 dx

Let § be the triangle with vertices (0, 0}, (1, 0), (1, 1) (as in Fig. 3.3) and let

w(xq, Xz) = U(X1)(-1 _ﬁ)-
X1
Then
(46) |IH“1,5§CA,

where C is independent of v.

Proof. We have
% x 2
I u’ dx =J v (xl)dxlj. (1——2) dx;
0 X1

(4.7 .
—EJ. 07 (x1)x; dxi = CA”.
Furthermore,
X w2 1 x g2
J‘ I:J' — deJ‘ (1—‘“‘%) dX2+I Ude1j’ _de:z]
6x1 3)-’1 X1 0 0 X1
2 1
ég[j —) dx1+J‘ xfivzdx,]ECAz,
0
au\ 2 L 9 1 . ,
(4.9) J.(?) dxéJ. ) a’xlj —zdxzéj vk do = A°
s \oX2 0 0o X1 [

Since (4.7), (4.8) and (4.9) give (4.6), the lemma is proven.
Remark. 1f v is a smooth function, (4.5) implies that ¢(0) = 0. Moreover, if v is a
polynomial, then i is a polynomial {in two variables) as well.

4.2. Approximation properties of the space #,(T). Suppose that 4, =
{1a|0 <A << Ag}is a one-parameter family of functions on  that satisfies the following,
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where Ag, v and « are certain nonnegative constants:
(i} uac €(Q) (not E(Q)) for all 0 <A< A,
(ii) supp ua< R, for all 0 <A< Ay, where

A 1 X
Ra = {x € O(ﬁ), ﬁ—1<x2<ax1},
3/ o
(iii) there is a nonnegative, nondecreasing function C(+) so that

ID®ua(x)| = C(la|max (Jx[, A)) =

for all 0 << A< A, and all x € O, where ]x[ = min (x1, x,) and {a} = max (a, 0).

We shall study how polynomials in #,(T) approximate functions chosen from such
families, when T = 0.

Let

Un(&) = us(®(&)) for £e é(%),

and let
Uy ={UA)I0<A<Ag).

We now prove the following theorem:
THEOREM 4.1. Letk=0. Then

Use H“(é(’zi’)) for all 0< A< Ao,

and
(4.10) U lle.0omry = C (k)A™ /220172

where C is independent of A.
We first prove some auxiliary lemmas.
LEMMA 4.3, For 0<t<w/2,n=1 and 1<k =n where k and n are integers, let

n

" o kiKY o 20-p 4 . 2
(@.11) Wet)= Y (1) () sin?* " 19 gin?
i=1 ] dt
Then
{4.12) "W (1) = Cln)e™*

Proof, Obviously, "W, (f) is a trigonometric polynomial, In a neighborhood of
t =0, we have

sin®“ £ =X + O (),

and therefore,

dn SiI]Zk {2k—n}
4.13) l e (| =Ch)t .

Hence, for j£k =n,

atkep A" o - 2
sin®* ”tﬁ sin? (1) = C(n)2 P2

= Cn)ttetrm),
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where
(4.14) Ak, jn)=2(k —j)+{2j—n}.
Since it is easily checked that

Ak, j,n)={2k—n},

the result follows.
LemmMma 4.4, We have the following for all 0<<A<Ay and 1£[= 8, where 8=
arcsin A'/?;

(4.15) l 81U, ]<

—{lk|-2v}
precpyiatd] Eal L)

Proof. We have (see, for example, [9, p. 19])

aklUA_ ky ) 16uA
= L Wi TR ),
and therefore
CAR N . 1 G’Hu,_\
(4.16) priyy ,Zn? W& Wila) - 2 HBle))

Using Lemma 4.3, we find that
I U,
dET aEs:

provided that Jb(¢)] > A.
Because C e[ = 10(&) = CE[?, (4.17) can be written in the form

= Clhy k) 3 ¥ £R kgl R g,

J=11=1

(4.17)

U, S8 kg R kgh e 20—y}
(4.18) [T =t k) 3 X gl atgt tageg 20
AET1BES2 i=11i=1

provided that J£[ = 6. Since ¢.1£&, = € = ¢,&; if £€supp Ua, we have

1

d U, ks (ilk, .k )
4.19 =C(ki, k 2 >
(4.19) seFagn| = Clh z)rgf pping
where
(4.20) Az(f L ks ko, v) ={2] —kd+ {21 -k} = 2{j + 1 — v}

Since a simple computation shows that
(4.21) Ar= (k] =29},

(4.15} follows from (4.19) and (4.21).
We will now prove Theoram 4.1.
Proof of Theorem 4.1, Let

R =&7'[R,].
Since supp Us< RS by assumption, we have
{4.22) 10z 00w UL 0wz + Ul 22-000)-

We will now estimate the terms in (4.22).
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On Q(8), (4.16), Lemma 4.3, and property (iii) show that

2

C(ml, H’lz) Z Z 52{21 m]}§.2{2! mz}A—2{]+l y]

j=11i=1

‘ amlr,
DETT D€

Since # = CA'?, we find that

(L m, m
” am Ua SClmy,my) 3 5 AHAL20200m 202l
317 0€2 0,00 =111
- WO ALGdhmymyit ]
<Cimym) ¥ ¥ A
i=ti=1
(4.23) = C(m, mp)A~Im2vIY
On RY — Q(8), Lemma 4.4 shows that
Im| 2 /2
" Ua
—_ =C(my, m -[ *Z{Im\*h}d
07 887 o,r2—0e) v ma) cal? G &

(4.24) = Clmy, ma)(AY?)~CUml-2v-2)
The result now follows. -

THEOREM 4.2. Suppose that ua € ¢, is continuous on Q, ua(0,0)=0, and ua=0on
the side s5 of T. Then there exists a z, € P,(T) such that the following hold for integer
k=2y+1:

(4.25) () lua—zpli.r=Clk)p FPA™/AE2VIH12
(il) Z, =0 on the side s3 of T,

(i) U (us—z, 07" doy +J's (d%(uﬁ-zp))

2

1/2
d; dd,]
i [

(4.26) S Ck)p *TPATVHRTIIE =1 0r 2,

where we have used o, to denote the distance to the origin measured along s,

Proof. Theorem 4.1 shows that the function U, satisfies (4.10). Therefore, there
exists a sequence of trigonometric polynomials of period # all symmetric with respect to
the lines &= 2 #/2, &, =0, &= £ /2, £ =0 and are such that

@27 Us=tllm 6= Clm, k)p~ A VHER2 for0=m =k,

Since U, = 0 at the vertices of T, we can modify each 1, so that £, = 0 at these vertices,
the symmetries remain and (4.27) holds for all # > 1+ £, In addition, using the trace
theorem, we have

(4.28) It, — Uallis® = Clie)p~*PAT2E22 for i=1,2, 0r 3.

Now let £,(£) = z,(P(£)} where z, is an algebraic polynomial of degree p. Using Lemma
4.1, we obtain {4.25). Since ¢, =0 at the vertices of T®, z, =0 at the vertices of T.
Furthermore, we have that

|Ua—t,(aD)| < Ca)' e, — Ualir,o®,

where we have denoted the distance to the origin measured along s?’ by a?. Thus, we
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find that
J (zp—u)oi do;= CI L o= Us¥ (e st da?f

(4.29)

=C| (- U D da?

=C|t,~ Uallie fori=1lor2,

d 2 d .
[ (Fr-ud) wda=c| (st~ U0) oF dat

(4.30) R e

=, — Uyllis» fori=1or2,

and (4.26) follows.

Since the map dis analytic on s3, we can use Lemma 3.1 and (4.28) to modify z,, so
that z, = 0 on s3. The proof is now complete.

Remark. We have assumed that the triangle T is situated as shown in Fig, 4.1, Tt is
easy to see that a linear transformation of coordinates does not alter Theorem 4.2,
Therefore, Theorem 4.2 is true for any triangle T with a vertex at the origin.

4.3, An example of a i, -family. Let y(x) denote an infinitely differentiable
function on R such that y (x}=0for0<x <3, 0=y(x)=1fors=x=1and x(x)=1for
1<x<<oo, Set yalx) = x(x/A) for any A= 0.

Let (r, ) denote polar coordinates in R?and let

(4.31) u=p(r)8is),

be such that # € C*([—w, w]) and p € C™((0, 2)) N C([0, ©0)). Furthermore, suppose
that & has support in R, for some « << 0, u = 0 on 53, p(0) = 0 and that thereisa y > 0 s0
that

d'p

d =¢""C(n) foralln=0andr>0.
»

{4.32)

Now set pa= xal(r)p(r) and us = ps6{é). Then, obviously, u#,=0 on s; and u. has
{(compact) support in R,, for all A>0,

We will now show that i, forms a . -family of functions. Obviously, parts (i) and
(ii) of the definition of the 4, -family are satisfied. Also, (4.32) and the fact that y, =10
for r = A/2 show that

kg k—f k )
(4.33) |aa:’l:.\ Z XA g _P =C E ATAY R = C(k)A'v-k’
k| i {—f
9 up | 'kla)(Ap 1 LI ax 3" 7o 1
——|=C T =C =T
’Bxif’ax‘z‘z %o ar' r§0;=0 ar’ [1ar™7 |
(4.34)

=C EH AT AT M = o har R,

i=0

for all k£ =0 and multi-integers «. Thus, since ya(r) = 1 if r = A, we obtain property (iii)
of the definition.
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We will now describe another property of the functions discussed in this section.
LEMMA 4.5. Suppose that u is given by (4.31), where p and 0 satisfy the conditions
discussed above and let us = xA(r)p(r)8(p). Then

(4.35) lo — sl 1,6 = CAY  forall A>0,

where C is independent of A.
Proof. Set v=u—us= (1 ya)p(r}6{¢). Then (4.32) shows that

="'C forall 0<<A=r,

(4.36) 1 oy

ax;

and v =0 for r = A. Therefore, we have

au\’ &
(4.37) I (—”) dxéCJ P 2 dr = CAY,
G \dx; o
(4.38) L ol dx = Cj PPl drsoat,

and the result easily follows.

From the point of view of applications, the function p(r)=r"g(|logr|) is of
importance, especially when, for example, g(x)=x" or g(x) = cos x. For these exam-
ples, (4.32) is satisfied for any vy < yo.

4.4. The convergence rate of the p-version of the finite element method.
Returning to our model problem (3.1) and (3.2), we can assume (see, for example, [10]
or [15]} that its solution i, can be written in the form

(4.39) Up=w+ ¥ U

i=1
where w € H*(Q), v1, 02, * + +, 0, € H*(Q) if Tt = du/dn, or where @ er(Q(,)DH(l,(Q),
Ui, Uz, " ", Uy € H})(Qo) if I'u = . We can also assume that each v; can be decomposed
as follows:
(4.40) v = aip; (1:)8::),

where (r;, ¢;) denotes polar coordinates centered at the vertex of the polygon (g, a; is a
constant and ¢; € C™([—m, #]). Each p; can be further decomposed as follows:

(4.41) pi(ry=rgd|log ),
where ;> 0 and the function g; satisfies the following for all j =0 and 0 <x < c0:

'6 g;(x)
ax’

<C(])x "+D,, pi,jéo.

The coeflicient y; is closely related to the angle of the boundary of {} at the vertex A,
Without any loss of generality, we can assume that each 4; is a smooth periodic function
with period 2 7. Thus, the function z; can be extended to all of R 2 The form described in
(4.39) occurs in all elliptic problems, for instance, problems of elasticity (see [15]).

By using suitable partitions of unity and suitable modifications of w, we can assume
each p; has small support and that each v, is associated with an (open) cone K (of angle
<) which contains the support of v; and only one triangle that meets A,
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\ %/
N Tz//;/

Q

F1G. 4.2. Triangles and enclosing cones.
Let y;a=x{(r~r)/A) for 1=i=n, and let

Va= _;} UViXia= _; Ui a-
We now state the major theorem of this section,

THEOREM 4.3. Let uqy be the exact solution of the problem (3.1), (3.2) which, as we
have noted, can be written in the form described by (4.39), (4.40) and (4.41). Let u, be the
finite element approximate for uo. Then for each k > 1 and £ >0, we have

(4.42) lleto = ol 2= C(&)p ™ [ Allcre.
(4.43) where w =min{k +1, 2y, -+, 29}

and where o; = /v, is the angle made by 0{) at the vertex A, for 1 =i =n.

Proof. The exact solution ug can be written in the form described in (4.39) where
we H75(Qy) and v; = 7/ a;(see [15]). Itis sufficient to show that functions o and {v;}
can each be approximated by some z,ePL% if Tu=u, or by some z,e @, if
I"2 = 91/ 9n, in such a way so as to preserve (4.42). Theorems 3.2 and 3.1 show that the
function w is approximable in the desired fashion. Thus, we only have to concentrate on
the approximation of some function v;e H o) or H' (). Tt is easy to see that
via€H o) if v; € H(€) and using Lemma 4.5, we see that

{4.44) loia—villia,=CAY* forany A>0.

In addition, Theorem 4.2 and the remark following it show that if 7; has A; as a vertex,
there exist polynomials

Zp € Pp(Ty) forp=0,
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such that for any kj- =2v +1, we have
(4.45) 120~ vralr = CUp 5P GV,

and such that 7,,; satisfies (4.26) on the sides of T;. If T;, and T}, have A; as a common
vertex and a common edge s, the function Z,; — £, ;, is a polynomial of degree p on s
which vanishes at the endpoints of s and which satisfies (4.26). We can use Lemma 4.2
to alter Z,,;, so that 7, ;, = 7, , on s such that (4.45) still holds. A similar alteration can be
made if v;, =0 on a side s <3}y N 7—", for some T; having A; as a vertex. Thus, we can
construct a z,, € Y Q) or a 2, € PL Qo) if v; € H(Qo) such that

(4.46) oo = vl 0,5 C(R)p™ 672 A7H2E20I12,
Combining (4.44) and (4.46), we find that if lg, =29;+1, then
20 = vilay = Ce)A™ "+ Clkpp &2 A VRG22,

Now choose ko= max«;=, (2% +1) so that

__ T2%ko 4
STV TRy e

and set A=p~*., We thus have the following for each 1=i=n:
“zp,i n Ux‘“l,ng C(S)p_zy“H’ + C(ko)p~k0+2—yi)«+,\(k9j2—1/2)
(4.47) =Cle)p ™™ + Clhko)p 2™
=C(e)p 27",

The proof is now easily completed. (It has been assumed, for simplicity, that {|f{i.,, = 1.)
We have only analyzed the rate of convergence of the p-version for the model
problem (3.1) and (3.2). However, since H (o) and H§({) approximation results
were proven, this restriction is not an essential one.
Note that (4.42} and (4.43) show that Theorems (3.6) and (4.3) prove the best
possible convergence rates, up to an arbitrarily small £ > 0.

5. Numerical examples. In order to illustrate the results of the theorems and in
order to show the efficiency of the p-version of the finite element, we now present
several examples. The first example is a simple bar problem in one-dimension and the
numerical results are based on a computer program written specifically for this problem.
The other examples are two-dimensional and the numerical results are based on
COMET-X, an experimental prototype for a general purpose finite element computer
program developed at Washington University, which implements the p-version of the
finite element method [2].

5.1. A one-dimensional (bar) problem. We consider the problem:
(5.1) W= —qlx) forxeQ=(—1,1), ('=—d—),
dx

where the (loading) function g(x) and the (Dirichlet) boundary conditions will be
specified later. The energy inner product is

1
(5.2) B(u,v)=(u,ﬂ)E=J‘ u'(x)o'(x) dx.
-1
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We seek a solution u € H((}) which satisfies

1

1
(5.3) {u, D)EZJ w'(x)v'{x) dx =J' g(x)ve(x)dx for all v e HA(Q).
-1 1

We choose as basis functions

X

4!1,-(x)=I P(t)ydr forizl,

-1

where P;(r) is the Legendre polynomial of degree i. Observe that #;(x), i=1,2, -
form an orthogonal family with respect to the energy inner product; i.e., (s ;)5 =
f11 Pix)Pyix) dx = (2/(2i + 1))8;

In this one-dimensional case, it is possible to prove direct and inverse approxima-
tion theorems by using weighted Sobolev (respectively Besov) spaces associated with
the Legendre differential equation,

I PPN
dx[(l X )dx] nin+Du,

once we realize that the Legendre polynomials are eigenfunctions of this equation.
Using this approach, ¢ does not appear in the expressions for the rate of convergence,
e.g., in (3.35) and (4.42). It is not clear how to generalize this idea of the two-
dimensional case. Our proof for two dimensions was therefore quite different.
First we consider convergence when {} is not divided; i.e., we use only one interval.
The finite element solution u, € @E,f{;] (£)) satisfies
1

(5.4) (tpy i) E =_|. ) g (x ) (x) dx, i=1,2,-,p.

If we write

w0 =5 50+ Eu+ £ awno,

it follows that

_2i+1

(5.5) a; 2

1
J._lq(x)ilf,'(x)dx, i=1,2,--+,p.

Also, if we denote the error by

(56) ep(x):u(x)_up(x),
it follows that in the energy norm |le, ||z = (e, ep)E,
2
leollz = llu — ol = lusll 2= luspl 7= || 2 amix) .
i=p
(5.7) o 5
o 2841

If we let U = |lu||% denote the strain energy, then U — U, =|le, | is the error in strain

energy.
Case A. dufdx=v1—x2, q{x)= —(d/dx)V1—x".
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In this case, u(x) =3(xv1 —x>+sin ' x) and the boundary conditions are u(—1) =
— /4, u(1)=w/4. Also, the energy is

1
4
halz= [ a-sar=%
—1 3

The coefficients a; in (5.5) can be evaluated explicitly. First, (5.5) becomes

- 1
(5.8) ai=2l;1I Vl—sz,-(x)dx.
-1

Now, a; =0 for / odd, and using the recurrence relation for derivatives of Legendre
polynomials [1],

Piii ()= Piaa(x)=(2i + D Pi(x),

fori=2m, m=1,2, -+, we obtain
1 1
—5 1 X
V1—-x2P,(x) dx = — I (Pam+1(x) = P 1(x)) dx
o 2 4m+1 » \/mi\ Zm+1 2 1
(5.9) -
=4m 1 L cos (P, 1(cos 8)— P, _1(cos 8)) df.

From [1, formula (22.13.7), p. 785], we have

i T (2m\{2m+2
(5.10) L (cOS 6)Pspy.s4(c0S 6) d@—P;;q( " )( - )
Substituting (5.9) and (5.10) into (5.8), we obtain by straightforward calculation,
22m)+1 T {Zm) 2
azm = Tm .
2 4"2(m+1)2m -1\ m
From Stirling’s formula, it follows that
(Zm) 1 4
m VT ’
so that
1
(5.11) a2m=O(—-§) as m - 00,
m
Therefore, the square of the energy of the error in (5.7) is given by
2 1 1 1
5.12 2_ 22 __ o( —) - o(—) - 0(—),
( ) “ep"E i=§+1 a i+ 1 i=§+1 ;5 p4 N*

where N denotes the number of degrees of freedom (p ~N in one dimension).

On the other hand, in order to study the convergence of the {(usual) s-version with
N linear uniformly distributed elements, let x; = 1+ (2/N),i=0,1,2, -+, N and let
un{x) denote the corresponding finite element solution. Then

uplx)=u(x),  i=0,1,2,--- N,

and we can compute the norm of the error ¢, = u(x)—un(x). We obtain (for linear
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elements)

(5.13) O(73) log NI =lleslt = 02 log N1
N N

For quadratic and higher elements, we obtain

(5.14) o(ﬁlﬁ) §||eh\|25=o(£~g)

(see [3]).

Fig. 5.1 shows on a log scale the behavior of the square of the energy error. We see
that in the case of the p-version, the rate is practically 4, as follows from the asymptotic

-6u T T T -‘ -20 T T T T
-6.2 — -29F -

-64 ~ -24

| |
@ @
@ =)

|
-
=]
1
'
b
=)

2
E
7
E

log llell
'
i
[
1
1ogll ell
I
a2
s

1
=~
e
4
)
w
B

1 ~4.0
20 -18 -16 -14 -12 -10 -2.0

log { YN log { VN1

FiG. 5.1. Case A: Square of the energy error vs. reciprocal of the number of degrees of freedom.

analysis. In the case of the A -version, the asymptotic range is not achieved and we see
the rate is about 1.81 instead of 2.

Case B. u(x)=|x|**(1-x%), g(x)= —(d*/dx>)(|x[**(1 = x7)).

The boundary conditions are u(—1)=u(1)=0. The only qualitative difference
between this case and Case A is that the square root singularity in «'(x) now occurs in
the interior of €} instead of at its boundary.

We again consider one interval using the same basis functions as before. Equation
(5.5) now becomes

L2410 d s .
a=2 j (1 AP ) d
2541}
(5.15) =2 G- 3 sen P
-1
0 if i is even,
=<2i+1

1
5 jxm(S—'fxz)P,-(x)dx if 7 is odd.
0



Downloaded 12/04/25 to 128.62.208.154 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

p~VERSION OF THE FINITE ELEMENT METHOD 537

From {1, formula (22.13.9), p. 786], we have
j}p u)dx:(—nmron+%—A/mru+w/m
o o 2T(m+2+A/2)TG-A/2)
so that after a straightforward calculation, we obtain
m+3TE _ (m-9rE) ]
Fm+drG)  Fm+DID)
Lim = HIE)2m +1)(m + 1)]
T(m +@T(-3)

A2,

1
j £V23 = Tx )Py () d = (—1)"‘[
0

=

After substitution in (5.15), we find that
et D0m =D 2m + 1) (m + 1)
T(m + (-3

From Stirling’s formula, it follows that for { odd,

Aam+1= (_1)

1
a; = O(?) as { >0,

Therefore, the square of the energy of the error is now given by

2 1 1 1
2 = 2 = Nl Y= of 2
]le"lIE_f=§+1 421 O(£=§+1 z") 0(p2) O(Nz)‘

Thus, we obtain the same rate of convergence {(up to a log term) for the square of the
error |lesli: as obtained for the h-version. This illustrates the importance of the
statement made at the end of § 4, that in order to get the full power of the p-version,
singularities must be located at vertices of the finite element mesh.
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logllell 2
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Fi1G. 5.2. Case B: Effect of the location of singularity on the rate of convergence.
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To illustrate this point further, we plot in Figs. 5.2, |les!|z and ||e,||: for Case B, using
one, two and three equal intervals for the p-version of the finite element method. The
results are summarized in Table 5.1. The convergence of the h-version remains the
same (||ex||z= O((1/N?)log N) for both Cases A and B). In Case A, the convergence of

TaBLE 5.1
Rates of convergence for the h-version (linear elements) and the p-version of the finite
element method in a bar problem.

h-version p-version

One interval Twa intervals  Three intervals

llew || anv ez av lellz an lelE
1 1 1 1 1 1 1
Case A FilogN| N N ¥ I e =
cen Dpw L L1111
ase N2IOE N N N N N N

the p-version remains the same regardless of the number of intervals (le]z = O(1/N?)),
whereas in Case B, the order is 2 for sve intervals, whereas it is only 1 for both ore and
three intervals. This is, of course, because in Case B for two intervals the singularity is at
a vertex of the mesh, whereas for one and three intervals, it is in the interior of elements
of the mesh, with the consequent degrading of the rate of convergence. In Case A, the
singularity is always at a vertex of a mesh. We mentioned here only the case of the
h-version with uniform mesh spacing. It can be shown that when an optimal nonuniform
mesh spacing for elements of degree p(fixed) is used, then lle, ||t = O(1/N®), where the
order retation depends on p. In this very special case, it is possible, of course, to analyse
in more detail the combined h-p-version, but we shall not go into that.

5.2. Two-dimensional problems. An edge-cracked panel and a parabolically-
loaded panel. We now consider two problems taken from two-dimensional linear
elasticity. One is an edge-cracked rectangular panel, shown in Fig. 5.3; the other is the
parabolically-loaded square panel, shown in Fig. 5.4. In both cases, the displacement

%TT RERRRASSRRRERRERN
n

3a /—Svmrnetrv Line

c -

3a

LV
E IRNERERTR RN

xg—--.-fﬂ.a—xg—L'Ea‘ﬁ—-

FI1G. 5.3. Edge-cracked rectangular pane! and finite element triangulation.
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U

F1G. 8.4. Parabolically-loaded sguare panel and finite element triangulation.

field is locally of the form u = r“¢(#), where r and # denote suitable polar coordinates
and ¢ is a smooth function. In the case of the edge-cracked panel, a =5 when r is
measured from the crack tip; in the case of the parabolically-loaded panel, a =2.74
when r is measured from a corner of the panel (see [27]). The computations were
performed with the computer program COMET-X which allows the polynomial order p
to be varied between 1 and 8. We wish to illustrate the following points:

(a) As claimed by the theoretical results, the rate of convergence is

(5.16) U-U,~CN™*,

(when neglecting ¢ and the fact that the edge-cracked panel is not a Lipschitzian
domain). In Fig. 5.5, we plotted U —~ U, vs. N ~! on a log-log scale for the edge-cracked

g 7 ] 5 4 3 2
T T T 1 T L]
01k ]
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—01} N
-0z | -
—o3f J
-04 A
2l 08| -
2
=111 4
= 06|
g
-7} 4
-08 | 4
—oo } .
1 1 1 1
~28 ~24 ~2.0 16

tog(1/N)
F1G. 5.5. Edge-cracked reciangular panel. Estimated error in strain vs. reciprocal of the number of degrees
of freedom.
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panel for two x/a ratios. U is an estimate of the exact strain energy value (of the
half-panel) obtained by extrapolation from the following expression:

~ UgNg—U','N',' 0'2(12.[
(5.17) U 0{113/:13:{4 Ne— N, 17.385486 T
in which the subscripts indicate polynomial orders, o is the applied stress, ¢ is the panel
thickness, E is the modulus of elasticity. Poisson’s ratio was 0.3 in all computations. It is
seen that the slopes of the log (7 — [J,) curves rapidly approach 2« = 1. Significantly,
the asymptotic range is entered at low, computable p values. This has been utilized in
practical computations [26]. Similar behavior is observed for the parabolicaily-loaded
square panel in Fig. 5.6. Here the slope of log (I7 — UJ,) approaches 2a = 5.48. For this
problem, a series solution is available and U can be computed to arbitrary precision [8].

U-UnlE

log[
1] i
el o
(=] (=}
T T
o
&
2
1 1

lag(1/N)

F1G. 5.6. Parabolically-loaded square panel. Error in strain energy vs. reciprocal of the number of degrees
of freedom.

(b} When the singularity is not located at a vertex, the rate of convergence
decreases. To illustrate this feature, we varied the parameter x for the edge-cracked
panel (Fig. 5.3) and computed 2« in (5.16) from the 7th- and 8th-order approxima-
tions:

for various x/a ratios, The resuits are plotted in Fig. 5.7. It is seen that 2a;_g decreases
as the interelement boundary approaches the crack tip C. It was found that aspect ratios
as high as 300 could be employed without encountering numerical instability.

5.3. Roundoff error. When high-order polynomials are used, the choice of basis
functions becomes important from the point of view of roundoff error. It is possible to
design stable basis functions on the basis of theory developed mainly by Mikhlin (see
[16, Chapt. 2] and [4, Chapt. 4, 7]). Of course, the choice of basis functions is also
influenced by programming considerations and the range of p for which the program is
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LZ]

Fi1G. 5.7, Edge-cracked panel. Variation of the rate of convergence with x/a.

written. In general, it is desirable that the basis functions be hierarchic, as described in
§ 6.1, and the computation of elemental stifiness matrices and load vectors be as simple
as possible.

The basis functions currently in COMET-X were chosen primarily on the basis of
programming considerations and they are not optimal from the point of view of
roundoff error. Experience with the code has not indicated significant accumulation of
roundofl error in double precision computations within the range of p allowed by
COMET-X (1 to 8), however.

To study the characteristics of these basis functions from the point of view of
roundoff error, the assembly and elimination procedures were executed in both double
and single precision (7 versus 15 decimals on the DEC system 20 computer) for the two
problems described in § 5.2. All other computations were performed in double pre-
cision only. (COMET-X employs a modified version of Irons’ frontal solver {11] to
carry out assembly and elimination.) The results, given in Table 5.2 indicate that for
p = 8 the roundoff error is not critical, but if significantly higher p is to be used, then it
will be necessary to exercise caution in selecting the basis functions.

TABLE 5.2.
Accumulation of roundoff error with increasing polynomial order.

Edge-cracked rectangular panel (Fig. 5.3)

Parabolically-loaded
xfa=3 x/a=02 square panel (Fig. 5.4)

Upe Usp log & Upp Usp log e Upp Usp log e

5 17.16690 17.166%0 < -6 16.83520 16.83520 < -6_ 0.2542124 0.2542124 < -6

6 17.25347 17.25329 —-4.99 16.97998 1698000 —5.94 0.2542144 0.2542144 <6

7 17.31114 17.31670  -3.50 17.04281 17.07217 —2.78 0.2542147 0.2542147 <-6

8 17.34988 17.38613 -—2.68 17.12741 17.08960 —2.67 0.2542148 0.2542170 -5.06

Upp: computed sirain energy, all contputations in double precision;
Ugp: computed strain energy, assembly and elimination in single precision;
Upp— Usel
F=———
U

U exact (or estimated true) strain energy; U = 17.485486 o2a*#/E for the edge-cracked panel, [7 =0.25421481 (o2/*1)/E for the
parabolically-loaded square panel,
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6. Computer implementation of the p-version: COMET-X, In order to imple-
ment the p-version efficiently, it is necessary to have available a family of finite elements
of arbitrary polynomial degree having certain properties. The family should allow, for
example, as much information as possible to be carried over when increasing the degree
of the polynomials p to p+ 1. The present version of COMET-X contains a family of
triangular finite elements which enforce C*° continuity across interelement boundaries
for problems which require solutions in H(Q2) (planar elasticity). We now describe
some of the salient features of COMET-X.

6.1. Hierarchic property of basis functions. The basis functions corresponding to
approximation by polynomials of degree p constitute a subset of those corresponding to
an approximation by polynomials of degree p + 1. Therefore, the stifiness matrix for
elements of degree p is embedded in the stiffness matrix for elements of degree p + 1.
All calculations performed in generating the pth order elemental stiffness matrices and
load vectors can be saved for use in the (p + 1)st degree calculation. We call this the
hierarchic property of the family.

As an illustration of the difference between conventional and hierarchic basis
functions, we will consider linear and quadratic C° basis functions for a triangle (given
in natural coordinates (L1, L, L3); see[20]for a discussion of natural coordinates), The
linear function which is one at vertex / and zero at the other two verticesis I; fori =1, 2,
or 3, and it is the basic function for the nodal variable u(i), i =1, 2, 3. In defining
quadratic approximations, conventional approaches use the nodal variables u({), and
u(i"ywhere i, i' =1, 2, 3, where {' is the midpoint of side { (opposite vertex 7). It is clear
that the basis functions corresponding to u(i), i = 1, 2, 3, change from the linear to the
quadratic approximation. In the hierarchic approach, the nodal variables used for the
quadratic approximation are u({) and u,(i’), where the subscript s denotes differen-
tiation in the direction of a side. For p = 3, the external nodal variables used to enforce
C° continuity are jth order derivatives at the midpoint of each side in the direction of
the side, for 3 =j = p. Other nodal variables (called internal nodal variables) are used to
complete the polynomial to one of degree p {see [12], [13], [14], [19], [20], [21], [22]).

6.2. Precomputed arrays. It is possible to compute certain elemental stiffness
submatrices (corresponding to a standard triangle [14]) once and for all, and then to use
these standard submatrices in order to calculate the element stiffness matrices in a given
problem. Precomputed arrays based on hierarchic families permit convenient use of
elements of different polynomial degrees in the same mesh because two elements of
different degrees are easily matched along an interelement boundary. The pre-
computed standard submatrices are also hierarchic in character so that one version of
these arrays, corresponding to the maximum polynomial degree which will be used, can
be easily stored on a permanent file. Precomputed arrays are described in[23] and have
been incorporated into COMET-X.

6.3. Computational cost. There are three main phases in the computational
process of the finite element method:

a) Input phase, which includes the computations of elemental stiffness matrices
and load vectors;

b) Solution phase, which comprises the assembly and elimination processes;

¢) Output phase, which includes the computation of displacements, stresses, etc.

When the number of degrees of freedom is progressively increased, the major
variable cost occurs in the solution phase. In a number of numerical experiments
performed with COMET-X, it was found that the CPU time for the solution phase can
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be closely approximated by an expression of the form a + bN®, where 2< g <2.4 and a
and b are constants, Thus, although the stiffness matrix tends to be more fully populated
in the p-version than in the ki -version, sparse matrix solution techniques have provided
a substantial reduction in the number of operations as compared with solvers which do
not account for sparsity {8 =3). As has been already noted, the solution technique in
COMET-X is similar to Irons’ frontal solver technique.

Solution time information is given in Fig. 6.1 for the edge-cracked rectangular
panel (x/a = 3). The computations were performed in double precision on a DEC-20
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F1G. 6.1. Edge-cracked panel, x/a =3. Variation of the estimated relative error in strain energy and
solution time with the number of degrees of freedom. The relative error is defined as (U — U}/ U)x 100 where U
is given by (5.17} and U, Is the compuited strain energy.

computer, (DEC System 2040, 128K 36-bit word memory, TOPS-20 operating
system). The time for the frontal solver includes both the assembly and elimination
procedures. The time is given in both CPU seconds and in Equivalent Time Units
(ETU). As in [23], an ETU is the time required for squaring a full 18 X 18 matrix by
means of the subroutine GMPRD (double precision) of the IBM Scientific Subroutine
Package. On the Dec-20 computer, this operation requires approximately 0.33
seconds.

The total time accounts for all three phases of the computation, including compu-
tation of the displacement vector and stress tensor at six points per element.

6.4. The - and p-versions of the finite element method. Let us compare the A-
and p-versions of the finite element method on the basis of the present state of theory
and experience.

1) Asymptotic rate of convergence (in energy) with respect to the number of
degrees of freedom:

a) Forsmooth solutions, the rate of convergence of the p-version is not limited by a
fixed polynomial degree, as in the 4 -version.

b} In the case of nonsmooth solutions, the p-version has at least the same rate of
convergence as the A-version (when the k-version is based on quasi-uniform mesh
refinement), but in practical cases, for example, when the singularity is caused by
corners, the rate of convergence of the p-version is twice that of the k-version.

¢) The A-version, coupled with optimal mesh design, results in higher convergence
rate; however, the p-version can also be used in conjunction with optimally designed
meshes. In this regard, the mesh design seems to be much less critical for the p-version
than for the A-version.
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2} Input: Because relatively few elements are used in the p-version, the volume of
input data is smaller for the p-version than for the h-version.

3) Roundoff; In practical cases, the roundoff problem does not appear to be more
critical for the p-version than for the A-version.

4) Flexibility: From a practical, rather than a theoretical point of view, the
flexibility of the p-version is somewhat restricted by the fact that constant coeflicients
are assumed over large finite element domains. At the present, there is insufficient
experience with curvilinear and other numerically integrated elements in connection
with the p-version.

5) Solution time: The available experience indicates that for a given number of
degrees of freedom, the solution time for the p-version is about the same as for the
h-version.

6) Adaptivity: Development of adaptive finite element procedures has now been
recognized as an important area for research. (See, for example, [18].) From the point of
view of implementation, adaptivity based on the p-version appears to be simpler.
Adaptivity based on the A -version poses difficult data management problems. (See, for
example [5], [28].) In principle, it is possible to base adaptivity on a combination of the
h- and p-versions but such an approach would again pese difficult data management
problems. A more promising approach is to employ mesh grading on a prior basis,
either manually or with standard mesh generators, and then to make adaptive changes
by adjusting p.

7. Acknowledgment. We wish to thank Mr. David A. Dunavant of the Depart-
ment of Civil Engineering at Washington University for the computations leading to
Figs. 5.1 and 5.2.
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