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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT*

I. BABUSKAT AND J. PITKARANTA%

Abstract. This paper studies the plate-bending problem with hard and soft simple suppott. It shows
that in the case of hard support, the plate paradox, which is known to occur in the Kirchhoff model, is also
present in the three-dimensional model and the Reissner-Mindlin model. The paradox consists of the fact
that, on a sequence of convex polygonal domains converging to a circle, the sohutions of the corresponding
plate-bending problems with a fixed uniform load do not converge to the solution of the limit problem. The
paper also shows that the paradox is not present when soft simple support is assumed. Some practical
aspects are briefly discussed.
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1. Introduction. The Kirchhoff model of a plate is usually accepted as a good
approximation to the three-dimensional model for thin plates. In the case of simply
supported polygonal plates, however, the Kirchhoff model is known to suffer from
unphysical phenomena that can lead to a large error of the model in some situations.
In particular, the following paradox, referred to below as the plate paradox, occurs
[2], [4]. Consider a sequence {e,} of convex polygonal domains approaching a circle.
For each n, let w, be the transverse deflection corresponding to the Kirchhoff model
of the plate-bending problem, where the plate occupying the region w, is simply
supported on dw, and is subject to a uniform load p(x)=1. Furthermore, let w. be
the solution to the limit problem, ie., that on the circle, Then as n - o0, the sequence
{w,} converges pointwise, but the limit w,, is different from w,. For example, at the
center of the circle the error of w,, is about 40 percent. Some other related plate
paradoxes are given in [14], [15]. Practical implications occur, for example, in the
finite-element method when the domain is approximated by a polygon with sidelength
h-»0. For further aspects see also [8], [18], [21], [23], and [25].

It is often assumed that the plate paradox is caused by the assumption of vanishing
vertical shear strains that is implicit in the Kirchhoff model. This has been supported,
e.g., by a note (see [3]) that the paradox is not present when the Reissner-Mindlin
model instead of the Kirchhoff modet is used. The aim of this paper is to locate the
source of the paradox more precisely. We show that it is the way the boundary conditions
are imposed in the Kirchhoff model that causes the paradox, and not the overall
assumption of vanishing shear strains.

In the three-dimensional model of the plate, the boundary condition of simple
support is typically imposed by requiring that the vertical component of the displace-
ment (or at least its average in the vertical direction) vanish on the edge of the plate.
On the other hand, the Kirchhoff model effectively imposes the more restrictive
condition that all tangential displacements must vanish on the edge. Of course, it is
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also possible to impose such ““hard” boundary conditions in other plate models, e.g.,
in the Reissner-Mindlin model (cf. [22]) or in the three-dimensional model itself. We
show that in such a case, the plate paradox occurs in both the Reissner-Mindlin model
and in the three-dimensional model. On the other hand, we also show that the paradox
does not occur in these models in case of “soft” support, where only the vertical
displacements are restricted on the edge of the plate. Hence, we are led to the conclusion
that the paradox is caused by the hard boundary conditions that are intrinsic in the
Kirchhoff model.

Our results are based on energy estimates relating the three-dimensional model
and the Reissner-Mindlin model to the Kirchhoff model. Such estimates can be derived
by combining the energy and complementary energy principles associated to the
plate-bending problem. They were, in fact, applied early by Morgenstern [16], [17] to
prove that the Kirchhoff model is the correct asymptotic limit of the three-dimensional
model as the thickness of the plate tends to zero. Although the assumption of a smooth
domain is implicit in Morgenstern’s work, we can easily extend the analysis techniques
of [16] to more general situations. In particular, we show here that in a sequence of
convex polygonal domains converging to a circle, the relative error of the Kirchhoff
model, when compared to the three-dimensional model with hard support, is uniformly
of order G(h'?) in the energy norm, where h is the thickness of the plate. Moreover,
by similar techniques we show that the gap between Reissner-Mindlin and Kirchhoft
models is uniformly of order @(h) under the same assumptions. Finally, we show that
on a smooth domain, the three models are at most €(h'/”) apart. Hence we conclude
that the plate paradox must occur in the hard-support models if b is fixed and sufficiently
small.

Let us mention that our results are in parallel with recent benchmark calculations
[7]. These calculations confirm, in particular, that the error of the Kirchhoff model
with respect to the three-dimensional model is primarily due to the assumed hard
boundary conditions on simply supported polygonal plates. For example, in the case
of a uniformty loaded square plate of thickness h = side length/100, the relative error
of the Kirchhoff model in energy norm is approximately 11 percent when compared
to the three-dimensional model with soft support, and approximately 2 percent when
compared to the hard-support model [7]. This example also shows that the error of
the Kirchhoff model may be quite large even for relatively thin plates of simple shape.

The results above show that imposing various boundary conditions that are
seemingly close, such as hard and soft simple support, can influence the solution in
the entire domain and not only in the boundary layer. Very likely such effects also
occur for other boundary conditions for both plates and shells. Therefore, since any
boundary condition is an idealization of reality, finding the “correct™ boundary condi-
tions is an important and sometimes difficult part of building a dimensionally reduced
model. For example, both soft and hard simple support can be poor approximations
of the real “‘simple” support.

The plan of the paper is as follows. Section 2 gives the preliminaries and basic
formulations of the plate problems. Section 3 ¢laborates on the variational formulations
of the plate problems and presents various energy estimates. Section 4 addresses the
problem of the plate paradox. Finally, Appendices A, B, and C present some auxiliary
results needed in §§ 3 and 4.

2. Preliminaries. Consider an elastic plate of thickness h that occupies the region
Q=wx{—h/2, h/2), where w R’ is a Lipschitz bounded domain. We assume that
the plate is subject to given normal tractions p (i.e., the load) on w x{—-Ah/2} and
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@ x{h/2} and that it is simply supported on de x(—Hh/2, h/2) in such a way that if
4 =(uy, U, 4y) is the displacement field, then

h h
{2.1) us(x) =0, xeawx( 2,2)
and the other two conditions are natural boundary conditions describing homogenous
{zero) components of tractions. Later this condition will be called the soft simple
support. If we assume for the moment that no other geometric boundary conditions
other than (2.1) are imposed, the plate-bending problem can be formulated as follows.
Find the displacement field u, that minimizes the quadratic functional of the total energy

F(E)Z%I {A(div E)Z+M i [8U(y)]2} dx, dx, dx;

ij=1

1 h h
‘LPE[%("E)M('*E)]d"l"*?

in the Sobotev space [ H'(£2)]’ under the boundary condition (2.1). Here ¢ = {e5}iim1s
£y =4{(au,/ ax;}+ (au;/9x;)) is the strain tensor, and A and p are the Lamé coefficients
of the material, i.e.,

(2.2)

j = Ev _ E
+w(i-2v P T1+0

where E is the Young modulus and » is the Poisson ratio, 0= » =}, We also assume
that the surface traction p is symmetrically distributed with regard to the planar surfaces
of the plate, i.e., we consider a pure bending problem.

So far we have assumed a special model of simple support based on simple
geometric constraint (2.1). Of course there are many other possibilities. Later we will
discuss another model—of hard simple support—and will discuss the effects of these
models of simple suppori on the solution.

1t is well known that if k/diam (@) is small, the three-dimensional plate-bending
problem can be formulated in various dimensionally reduced forms (see, e.g., [1],[11],
[22]). Here we consider two representatives of such formulations that are used in
practice: the Kirchhoff model and the Reissner-Mindlin model (cf, [22] and the
references therein).

In general, when @ is fixed and h - Q, the three-dimensional formulation and the
dimensionally reduced models converge to the same limit, provided that the load p is
appropriately scaled (see below). Hence for sufficiently thin plates the maodels give
practically the same solutions. However, as will be seen later, what is “sufficiently
thin” can depend strongly on w, i.e., the convergence can be very slow in some situations.

In the Kirchhoff model, we approximate the three-dimensional solution as

dWg IWg
Up(xy, X3, X3) = (—x3 (x1, X2), =3 (x1, X3), wee (X, %5) ],
ax, x5

where wy minimizes the energy

(2.3) FK(w)=lJ {V(AW)2+(1“V) i ( 9 w) }dx1 dx2—J- Jwdx, dx,

2 ij=1 ax,-axj
in the Sobolev space H*(w) under the boundary condition

(2.4) w=0 on de.
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Here f is related to p as

Eh’

.y = .
(2.5) f~Ds D= 12(1 _y2)‘

When comparing different plate models with fixed @ and variable i we will assume
below that f (and not p) is fixed. This ensures that the different models have the same
(nontrivial) limit as h - 0. For example, defining the average transverse deflection in
the three-dimensional model as
1 (M2

J' u3( "y x3) dx3 L]

Wo=—
¢ h —~h/2
we can show (under fairly general assumptions on w (see [10], [11], [16], [17], and
§ 3 below) that |wo— wg | 1,y >0as h>0.

In the Reissner-Mindlin model, we approximate u, by

UolX1, X2, X3) = (_x39R,1(x1 » Xa), _xBGR,?.(xl , X3), Wr(X,y, %)),

where (wg, 8z) minimizes the energy

{V(div Q)z'*‘(l -v) i [%‘(Q)F} dx; dx;

Li=1

FR(w,Q):%J

(2.6)

+% (fﬁ) J‘ |0 — VY w|* dx, dx,— J fw dx, dx,
in the Sobolev space [ H'(w)]’ under the boundary condition {2.4). Here x = 6(1 — vk,
where ko= (1) is an additional shear correction factor that may take various values
in practice.

We point out that the Kirchhoff approximation to u, satisfies, in addition to (2.1),
the boundary condition

(2.7) (u|t|+u2t2)(x)=0, xeawx(—g,g),

where t = (t,, t,) denotes the tangent to dw. This suggests that we should also consider
the original plate-bending problem under such more restrictive geometric boundary
conditions. Below we refer to the boundary conditions (2.1) and (2.7) and their
counterpart in the Reissner-Mindlin model, i.e., (2.4) together with

(28) 61t1+92t2:0 on dw,

as hard simple support in contrast to conditions (2.1) and (2.4), which we refer to as
soft simple support. Hence, when using the Kirchhoff model we have in mind hard
(not soft) simple support. Later we will show that the incapacity of the Kirchhoff
maodel to represent soft simple support can be a severe deficiency of the model on
polygonal domains.

3. Variational formulations of the plate-bending problem. Energy estimates. In
§§ 3.1-3.3 and in the related Appendix A, we summarize first some basic characteristics
of variational formalisms and energy principles associated to the plate-bending problem
in its various forms. These results are basically known, but we present them here for
the reader’s convenience. In § 3.4 we prove some energy estimates relating the Kirchhoft
model to both the Reissner-Mindlin model and the three-dimensional model, using
the results of the previous subsections.
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We assume that the plate occupies the region Q =a x(—h/2, h/2), where w is a
Lipschitz bounded domain. Our particular interest is in the cases where w is either a
convex polygon or a smooth domain.

We denote by H (w), respectively, H*(£}}, the usual Sobolev spaces with index
5> 0. The seminorm and norm of the spaces [ H*(w)] or [H*(w)]* are denoted by
|'|ce and ||+ .., Tespectively, || q and |- | .q. By (-, ) we mean the inner product
of [Lo(w)1* or [L(Q)]", and by (-, -) the pairing of a space and its dual. The dual
space of Hy(w) will often be needed below and is denoted by H '{w).

3.1. The three-dimensional model. Let us denote by N the space of horizontal
rigid displacements of the plate

N:{(alx1+03x2! azxz—a3x1,0), O:’,-ER, i= 1>23 3}'
We define the space of (geometrically) admissible displacements in the case of soft
simple support as
h h
(3.1a) U= {y e[HY ()] u,=0 on sw X (—5 -2—), (,2)=0 Vye N}

and in the case of hard simple support as

h h
{3.1b) U={ye[H1(Q)]3: U3 = b+ Lu,=0 on wa(—E,E), (u, v)=0 VyeN}.

(For simplicity, here we also remove all the horizontal rigid displacements in case of
hard support.) Furthermore, we let ¥ stand for the space of stress or strain tensors
defined as

¥ = {g = (o-ij)ijzl: a; € L,{8}), oy = O}i},

and introduce a linear mapping S: # - 3 representing a scaled stress-strain relation-
ship of a linear elastic material:

(Sg)f,j = D_I[A tr (g)ay + u7yl,
where A and u are the Lamé coeflicients and the scaling factor D is as in (2.5). Then
S is one to one and

4 D
{3.2) (S g),-,,-=E[(1+v)r,j—vtr (z)8;].
Moreover, S and §™' are self-adjoint if % is supplied with the natural inner product

3
((__T, g)ﬁ": Z (o-ijs Tl}')-
Lj=1

Let us further define the bilinear forms
Ay, v)=(e(u), Se(v))%, wrvel,
¥,

2

m

B(g,1)=(2,5 ' D, o1

and the linear functional

Q(.@)'—*%Lf[m(-,g) +v(-, —g)] dx, dx;,

where it is assumed that f'e L,(w), to imply that Q is a bounded linear functional on
U (by standard trace inequalities).
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In the notation above, the energy principle states that the displacement field u,
due to the load f=(p/D)e L.(w) is determined as the solution to the following
minimization problem. Find y,e U that minimizes in U the functional

Flu)=35(u, u)— Q(u).

The existence and uniqueness of u, is due to the following coercivity inequality,
known as the Korn inequality (cf. [19]).
Lemma 3.1. If U is defined by (3.1a), there is a positive constant ¢ such that

(3.3) dwu)zclulia, uel.

We point out that the constant in (3.3) depends on @ (and h), although it is
positive for any given Lipschitz domain. In Appendix B we show that the constant in
(3.3} remains uniformly positive over a certain family of domains, a result needed in
§ 5 below.

Given f and the corresponding displacement field u,, let g, = Su, be the corre-

sponding (scaled) stress field. The pair (u, )= (u,, ;) is then the solution to the
following variational problem. Find (v, ¢} U x % such that

(3.4a) Blg, 1) (e(u), 1)%=0, 1€
(3.4b) (g, e(0)}=0Q(v), wvel

It can be easily verified following [5] and [9] (see Appendix A) that the solution to
(3.4) exists and is unique.

Finally, we mention that according to the complementary energy principle, g, is
found alternatively as the solution to the following minimization problem [19]. Find
go€ 4 that minimizes in 7 the functional

4(g) =3R(a, o)

under the constraint (3.4b).
In § 4 below we need the foilowing corollary of the two energy principles (cf. [16]).
LemmAa 3.2, Forany (u, g) € U x ¥ such that g satisfies (3.4b), the following identity
holds:

A (do—u, g~ u)+3B(go—a, g —a) = Fu)+ (o).
Proof. It follows from the energy principle that
Aluo, 0)=Q(v), vel
and from the complementary energy principle that
Blgo,1}=0, zcH: (5, e(v))e=0Q(v) Vyel.
Therefore, in particular, o(u,, u) = Q(u) and B(go, o) = B(go, vo), and hence
Sl (uo—u, uo—u)+5B(ao g, go—a) = (u, u)— Ay, u) +3B(g, @)]
+[354 (to, 1o) + 3B gy, 70) — B(gy, o)]
=[F(u)+ G(2) ]+ 354 o, to) —1B(do, o)]
=F(u)+ % (o). g

3.2, The Reissner-Mindlin model. In the Reissner-Mindlin model geometrically
admissible displacements {w, 8) span the space Ho(w) X V, where either

(3.52) V=[H" ()]’
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or
(3.5b) V={0e[HY@)]* ,0,+t,6,=0 on dw}

corresponding to soft and hard boundary conditions, respectively. We let X stand for
the space of momentum and curvature tensors:

K= {21 = (mij)ijzls my & Ly{w), my;=my},

and supply # with the natural inner product

Yo =

T

(m,

I

(g, ky).

1

i
Furthermore, we introduce the linear mapping T:% - 3 as defined by
(TE)y=vir (k)8 +(1—v)ky, ke .

The inverse of T is given by

1 v
6 T k), =—k, —tr (k)5,,
(3.6) (T By =1 by =t ()3,
and obviously T and T~' are self-adjoint.
Finally we introduce the bilinear forms

wR(W,B;z,rf)=(g(Q),Tg(g))+(%)(§—¥w,go—22), w,ze Hy(w), 6,0V,

2

h
%R(rzns 2/5 :ka 5)2(’25 T_ll:c)?f-'_( )(_’Y, g)s T!I,’:CE%, 2’,£€[L2((IJ)]2,

K
where g(8) = {g;(F) ﬁj:, and x are as in (2.6).

In the notation above, the Reissner-Mindlin formulation of the plate-bending
problem, as stated according to the energy principle, is to find the pair (wg, 8g)€
H(w)x V that minimizes in Hj(w)x V the functional

Frlw, 0) =3 (w, 85w, ) —(f, w)

for a given fe H Y(w).

The existence and uniqueness of (wg, 8z) is the consequence of the following
lemma, which is proved in Appendix B in slightly more general form (see Lernma B.2
of Appendix B).

Lemma 3.3, There is a positive constant ¢ such that

(£(8), TN+ [0 -Uwlioz c(l]+ Wi,
¢c[H (0)]), we Hiw).

Remark 3.1. Regarding the validity of Lemma 3.3 uniformly over a sequence of
domains, see Appendix B. (Such a result is needed in § 5 below.)

The analogy of the variational formulation (3.4) is stated for the Reissner-Mindlin
model as follows. Find (w, 8, m, y)e Hy(w)x VxH x[Lw)]* such that

(3.78) (219 T71§)3[~(§(g)’ =k)3[=0, 5’67{3
(3.7b) /) —(0-Iw, 0)=0,  {ellw)],
(3.7¢} (m, e(e)a+(y,9)=0, ¢V,

(3.7d) —(n¥2)=(f2), zeHyw).
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The (unique; see Appendix A) solution to this problem is (wg, 8z, mr, ¥r), Where
mp = Te(0z) and yx = (k/h*)(8z —~ Ywy) have the physical meaning of momentum and
(vertical) shear stress field, respectively, both being scaled by a factor D",

Finally we note that the pair (mg, yz) can be obtained alternatively as the solution
to the following minimization problem (the complementary energy principle). Find
(mg, yr) € % x[Ly(@)T* that minimizes in % X [L,(«)]* the functional

Gr(m, y) =21 Br(m, v; m, y)
under the constraints (3.7¢c, d).
Upon combining the two energy principles we obtain, in analogy with Lemma
3.2, the following lemma.
LEMMA 3.4. For any (w, 6)< Hy(w)x V and for any (m, y) € ¥ x[Ly(w)¥ satisfy-
ing (3.7¢c, d) the following identity holds: )

3og(Wr—w, 8 — 8; wg—w, O _Q)+%%R(Q1R_g!a YrRTY, Mg —
= Fp(w, 8)+ Gr(m, y).

IIE

92’1‘2“2’)

3.3. The Kirchhoff model. Upon introducing the space
W={ze HYw): 2z=0 on jw},

we formulate the plate-bending problem according to the Kirchhoff model as follows.
Given fe W’ (=dual space of W}, find wx € W that minimizes in W the energy
functional

Fr(w) =3((Tw), Te(Iw))x—(f w,
where T and (-, -)y are the same as in the Reissner-Mindlin model. The existence
and uniqueness of wy in the consequence of the coercivity inequality
(&, (W), Te(YWxzcllwlle, weW,

which itself is an easy consequence of Lemma 3.3. Note that wy is uniquely defined,

in particular, if fe H™'(w), and note also that the pair (wg, 8x), where 6 =Vwk,

minimizes the Reissner functional 5 over the subspace Z < H{w) x V defined by
Z={(w,0)e WxV:0=Vw}.

For the Kirchhoff model, the analogy of the mixed variational formulation (3.7)
is the following. Given fe W', find (w, 8, m, y)e Wx Vx ¥ x V' (where V' is the dual
space of V) such that

(3.8a) (m, T k)5~ (£(8), k)x=0, kel
(3.8b) (6-Yw,0)=0, ({eV,

(3.8¢) (meleNut{r,e)=0, @eV,
(3.8d) -(%Y¥2y={fz), zeW

LEMMA 3.5. The variational problem (3.8) is well posed and the unique solution is
(w, 8, m, v} =(wk, 8k, mx, yx), where O0x =Vwg, my = Te(8x), and Yx is defined by
(3.8¢), ie,

(3.9) (Y. @)= —(mx, (€ peV

Proof. If (w, 8, m, y)= (wg, 8k, mg, yx), (3.8a-c) hold trivially. Moreover, since
wi minimizes Fx in W, we have (mK,e(Vz))% (g(¥Ywk), Te(V2))s = (f, z) for all
ze W; so, by (3.9), (3.8d) holds as well. The well-posedness is proved in Appendix
A. a
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Remark 3.2. Note that although wg, 8y, and myx obviously do not depend on the
way the space V is defined in (3.5), v certainly does (see below). Hence in this
(somewhat weak) sense the “soft” and “hard” formulations are still separate even in
the Kirchhoff model.

We need below the following specific result related to the case where w is a convex
polygon.

LEMMA 3.6. Let wy be defined as above assuming that o is a convex polygon and
that fe H (w). Furthermore, let pc H)(w) and e H)(w) be such that

(3.10a) (Yo, Y6 =(4,6), ¢eHo(w),
(3.10b) (Y, Y6 =(f &), £e Hy(w).

Then p = wi and r = —Awyg.

Proof. From (3.10a,b) it is obvious that ¢ = —Ap € Hy{w), so it suffices to show
that p = wy. First, since ¢ ¢ H'(w) and since  is a convex polygon, it follows from
(3.10a) that p H*w) and ps H*(&), @ = @ — UA,, A, being the vertices of w; i.e.,
pe W (cf. [13]). Moreover, since p = Ap =0 almost everywhere on 3w and since dw
consists of straight-line segments only, it follows that 8°p/at*=3"p/an* =0 almost
everywhere on dw. Therefore, and noting also that dz/dt =0 almost everywhere on dw
if ze W, integrating by parts shows that

2 ¥p 9z
(099 =~((89), 1) = -w(T(8p), T ~1=) § (25 )

2
={(g(¥p), Tg(!Z))—J' [VAP+(1 —v) %] j—: ds

=(g(¥p), Te(V2)), zeW

Hence, by (3.10b), (e(¥p), Te(Vz))={(f, 2}, for all ze W, so p minimizes Fx in W
and accordingly, p = wg. 0
We can now prove the following result that will be needed in the next subsection,
Lemma 3.7. Let w be either a convex polygon or a smooth domain, and let
(w, 8, m, ¥) = (wg, Ok, Mk, Yx )€ WX VXH X V' be the solution to (3.8) for a given
fe H Y(w), and with V defined by (3.5b). Then YK =‘—V(AWK)E[L2(0))]
(wk, 8, mg, yx ) is a solution to (3.7} with h=0 in (3.7b). Moreover, if w is a convex
polygon, then || vk o= f-1., where

Uz

ze Ho(w) |2]10”

1A l-10=

and if w is a smooth domain, then ||y |0 = C||f|l.1.., where C depends on o.

Proof. If yx €[ Ly(w))? and f€ H '(w), it follows from a simple closure argument
that (3.8) remains valid if W is replaced by V and if (-, -) on the left side is replaced
by (-, ). To prove that yx = —V(Awg ), we integrate by parts in (3.9) to obtain

ds

|3

g
S(AWK)' q_odx1 dx2+J I:VAWK+(1_V) WK]&O

dw

(k> @)= —J

w

&zw,(
+ 1- - tds, eV,
Lw ( V) onaot LA ¢

Here the first boundary integral vanishes because vAw+(1— ¥)(3°w/9n") =0 on dw is
the natural boundary condition associated to the problem of minimizing %, and the
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second boundary integral vanishes since ¢ t=0, p € V, assuming that V is defined
by (3.5b). Hence yx =~V (Awg ). Onthe other hand, from (3.10) we have Yk € [Lo(e)T,
and from the well-posedness of (3.8) we see that indeed Yk = —V(AwK)

Having verified that yx =—V(Awg), we conclude from Lemma 3.6 that yx =V,
where ¢ Hi(w) satisfies (3.10b), so | ¥ llo.o =l f | -1, as asserted. Finally, if w is a
smooth domain, a standard elliptic regularity estimate implies that || yx [ .. = C||w||5 . =
Clfll-rn. O

Remark 3.3. 1t is essential for our results in the next section that when @ is a
convex polygon, || vk |lo.. is bounded by || £, ., independently of w, in contrast to the
smooth domain, where the constant depends on w.

3.4. Energy estimates in case of hard support. Let us define the energy norms
llu, g’ = st (u, )+ B(o, @),  (wo)e UxH,
liw, 8, m, yllx = Ar(w, 8; w, 8)+ Belm, v; m, v),
(w, 8, m, y)e Hy(o) x Vx X x[Ly(w)],

where the bilinear forms are as defined in §§ 3.1 and 3.2. Then by Lemma 3.2 we have
the identity

(3.11) o —u, @o— glif* = lw, 2|l —2Q(u)

whenever ue U and g € # satisfies the constraint (3.4b). Similarly, by Lemma 3.4,
(3.12) llwe —w, 8g — 8, mg —m, ye — ¥R =W, 8, m, ¥llz —2(f. w),

where (w, 8)e Hi{w)x V and (m, yye A% [ Ly(w)]? satisfies constraints (3.7¢c, d).

Let us first apply (3.12) to estimate the gap between the Reissner “‘quadruple”
(W, 6r, Mg, yr) and the Kirchhoff “quadruple” (wg, 8k, Mk, yx ). By Lemma 3.7, the
choice (w, 8, m, y) =(wg, 8x, mg, yx) is legitimate in (3.12) under the assumptions
that o is either a convex polygon or a smooth domain; fe H '(w); and V is defined
by (3.5b), i.e., the case of hard support. Upon simplifying the right side of (3.12), in
this case we obtain the identity

lIws — wk, 8r — Ok, Mp— Mg, Yr — YK ["2 = (h2/'<)||2’1c [ g,m s

which together with Lemma 3.7 leads to the following theorem.

THEOREM 3.1. Let w be either (a) a convex polygon or (b) a smooth domain, let
fe H {(w), and let (wg, Oz, mg, Yr) and (wy, 8k, mx, yx ) be the solution to (3.7) and
(3.8), respectively, where V is defined by (3.5b). Then in case (a) we have the identity

liwe = wk, 8r — 8x, Mp— Mg, YR~ ]’Ki”k = (hz/K)”f”ﬂ,w s
where || f| -1, is defined as in Lemma 3.7, and in case (b) the estimate
llwr — wk, 8r — 8k, Mp — Mg, ¥r “]’K”Iz = C(hz/'()“fuz—l,w,

where C depends on w.
Remark 3.4. It is easy to verify that

llwr — wi, 8r — 8, Mp— Mg, YR~ Yk "ﬁz = Ex ~ Eg,

where Ep and Ey stand for the total energy of the plate in the Kirchhoff and
Reissner-Mindlin models, respectively, i.e.,

x = Fr(wg, QK)=_%(j; Wi}, Egr = Fr(wrg, _GR)=_%<.I; Wg).
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In particular, if w is a convex polygon, Theorem 3.1 and Lemma 3.6 lead to the relative
estimate

(Ek - Eg)/ Ex = Clw, f, V)hz/f‘o,
where «, is the shear correction factor, and

1 (o Awgfdx, dx,
(1—v) [, wefdx, dx,

For example, if w is the unit square and f(x) =1, then C(w, f, ¥} =3.440428/(1 — v).

Remark 3.5. 1In case of soft boundary conditions, constraint (3.7¢) is more restric-
tive and rules out the choice (m, y)=(mx, yx) in (3.12). 1t is still possible to find
(M, Vi) e H x[Ly{w)]?, which is close to (mK, vk ) away from the boundary and
satisfies all the required constraints [16]. With such a construction, it is possible to
show that if both f and @ are sufficiently smooth, then

Cla, fiv)=—¢

|“WR — Wk, 8r — Ok, Mr — EK; Yr _:S’K]”z = Clw, f)h
For other estimates of this type see also [11], the references therein, and [20].

Next, we apply (3.11) to bound the difference between the three-dimensional
solution and the Kirchhoff solution. To this end, we need to construct a three-
dimensional extension (uk, gx)€ U X ¥ of the Kirchhoft solution (wg, 6k, mx, ¥x)-
Following [16] we define ux € U as
(3.13) g =(—X30x1, —X30k2, W + 33 lf’)
and gx € # as

Ogy™= —OX3My i35 Lj=1,2,
(3.14) 0'1(,13:“(%35%_%}12)71(,&, i=1,2,
Tgn=—a ( _% xg + §h2x3)ﬂ

where a = 12/h* and € Hy(@) is so far unspecified. It is easy to check that gx satisfies
(3.4b) as far as U is defined by (3.1b), so (3.11) applies with the choice (u, g} =(ux, gx)
in this case. After a short computation, the right side of (3.11} can then be expressed
as

—p)? 2
Mux, (_-_TK“F_ZQ(BK):(IIH__;)’ ,L (U’*‘TVVAWK) dx, dx;

-y,
160 J- [Vl dx, dx,
1
+5(1 = h’ Jiu (|2K|2+ vAwgf} dx, dx,
17

1
+m h* J‘wfz dx, dXQ"Z h? J; yif dx, dx,.
Now if w is a convex polygon, the choice ¢ =(v/(1—7))Awk is legitimate and
leads—recall also that | yx||5.=—f, Awifdx, dx,=|f||*,. (see Lemmas 3.6 and
3.7}—to the identity

17

32+8v+3v
1680(1—1)2)

2 2

lix, gxll* —2Q(ux) = h J £ dx, dx,.
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On the other hand, if @ is a smooth domain, we can still find for any § >0 a ¢ € Hy(w)
s0 that

2
(3.15a) J (¢~T;;AWK) dx, dx, = C6v*| Awk |3 .,

(3.15b) j |Vi? dx; dx, = C87'v*||Awk ||3 .

Since |Awk|i1.= C{®)|f]|-1.., we obtain in this case, choosing § =+1—2% h, the
estimate

v2h? 17h*
e, gl ~2Qu)= C (@) T2 W I + 1o 1/ e

We thus conclude the following theorem.

TaeOREM 3.2. Assume that w is either (a) a convex polygon or (b) a smooth domain.
Let fe Ly(w), let (4o, @o) € U X H be the solution to (3.4) with U defined by (3.1b), and
let (ug, o) be defined by (3.13)-(3.14), where (wy, 0x, My, Yek) E WX VXHX V' is
the solution to (3.8) with V defined by (3.5b), and either y = (v/{1—v))Awy (case (a))
or iy satisfies (3.15a,b) with8 =+'1 —2v h (case (b)). Then in case (a) we have the identity

lo—ux, go— gk’ = Ci(2) A 11210+ C2l) B £ 5.0
and in case (b) the estimate
lio— ux, go— gxli* = Cla) C3(»)h+ B F 1210+ Co() B f 1150
where || f| -1, is defined as in Lemma 3.7 and

324+8p+3:7 17 v?

wo-»° P sea— O

Ci(v}=

Remark 3.6. In the case of soft boundary conditions it is possible to show that,
if @ is smooth and f is sufficiently smooth, then

myo“ Ur,To— QKHIZ = Clw, f)[1+ C3(»)]h,
where g is close to gx away from the boundary strip dw x (—h/2, h/2) [11], [16].

4. The plate paradox. Let w,< R® be the unit circular domain with the center at
the origin, i.e.,

o™ ={(x,, x,): P=x]+x}<1}.

Furthermore, let w!™, n=1,2, - -, be the sequence of regular (n+3)-polygons such
that

oM e plrtile glnttlc o1

w5 e asnaw
in the sense that for any x € @' there is n(x)> 0 such that x € w*™ for all n> n(x).
Finally, let QU =w!"x (~h/2, h/2) and Q="' x(=h/2, h/2).

Assume now that the unit load is imposed, i.e., f p/D—l {see § 2). Then for
fixed thickness h there exist the unique solutions ul”, (wi), 81y, and wi!, n=
0,1,2,-- -, corresponding, respectively, to the three- dlmensmnal, Reissner-Mindlin,
and Kirchhoﬁ formulations of the plate-bending problem with either hard or soft
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simple support. In § 4.1 we will show that wi1—» w1 # wli! and give explicit expressions
for wigd and wi. This is the plate paradox in the Kirchhoff model pointed out in [7]
and [3]. In § 4.2 we will show that this paradox also occurs in the Reissner-Mindlin
model and in the three-dimensional formulation in case of hard simple support. Finally,
in § 4.3 we show that the paradox does not occur in the Reissner-Mindlin and three-
dimensional formulations where soft simple support is imposed. This has been briefly
noted in [3].

The results clearly show that seemingly minor changes in the boundary conditions
can lead to a significant change of the solution on Q') respectively, w'"), when n is
large. In fact, we will see that there can be significant changes already when n=1,

The main question we will address below in this section is whether, as n-—> 0,

y["]—> u
(wil, 01 - (W), 8¢ for the Reissner-Mindlin model,

-» w1l for the Kirchhoff model.

1 for the three-dimensional formulation,

wi

4.1. The plate paradox for the Kirchhoff model. We have shown in Lemma 3.6 that

forn=1,2, -, wi"=pl" and —Awl™ = ¢! where p!"! and ¢'"! satisfy (3.10a, b).
THEOREM 4.1. Let p'™, ¢'™'e H}(»'") be such that

(4.12) (TpL¥8) = (1™, &),  ¢eHio"),

(4.1b) (Y™, v6) =(f &), £e Hy(o'™)

with f=1. Then as n >0

B 0 >0, ™ = o i, 0.

Here we understand that ') and ¢'™ extend by zero from '™ 1o &'

Proof. Let P, denote the orthogonal projection of Hy(«'®) onto the subspace
H}" (') defined by

H"™ (@™ ={uec H(&'"")Y: u=0o0n 0" -w!"}

and let 1[7["] and p'"! denote the extension of ¢'"’ and p'"), respectively, by zero onto
', Then ifl\[”] = P, by (4.1b). From Theorem C.1 in Appendix C, it then follows
immediately that ¢*) > ¢ in H}(«'™). From (4.1a) we then see that p'™ — P, pl*7> 0
in H)(0'), and therefore, by the same argument, that 5 p™ in Hi(e™). O

Let us now characterize p(™ = wi) and p'™! = wl! more explicitly. To this end,

note first that p!™! is the solution to the problem
(4.2a) Aap™1=1 on w!,
(4.2b) p™1=Ap"" =0 on de'.

On the other hand, it is easy to see that p!® is the solution of the problem

(4.3a) AAp™ =1 on ',
(4.3b) p =0 on o',

2 [0]
(4.3¢) A+ (1- ) P __y,

on’ h
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Here (4.3¢) is the standard boundary condition for the simply supported circular plate
(see, e.g., [24, p. 554]). Solutions (4.2) and (4.3) show that

P = CFH IR+ O, pl= O+ P+ O,
2 2 2
where r"=x7+ x5,

1
C[m}: C[O]:_
3 3 64:

and C,, C, are determined from the boundary conditions. By simple computation we
get

1 5+v»
. )0, 0) = wk'(0,0)=—
(443) P ($ ) wK(’ ) 641+V,
o] — L] 3
(4‘4b) p (0: 0)_WK (0’ 0)=_1
64
and hence for » =0.3 we have
0] 0.0
———w[fﬂ( 0 4 36,
WK (O’ 0)

i.e., the gap between wit! and wi™! is 36 percent at the origin. Analogously, for v = 0.3,
s gap P g £
[whe! = Wi g,

iMoo

=0.287.

Remark 4.1. We have assumed that '™ were regular polygons. As the proof
shows, (4.5b) also holds when {@'"'} is an arbitrary sequence of convex polygons such
that &' »!” in the sense described above.

It is essential, however, that '™ are convex polygons. If we replace o'™ by &,
where &!"! are nonconvex polygons as shown in Fig. 4.1, then [15] shows that ¢

a

- kN

FIG. 4.1. A nonconvex polygon w'"),



Downloaded 12/04/25 to 128.62.208.154 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 565

satisfies
AAG™ =1 in !,
A [oo]
cﬁ[m]:aw =0 in 9!,
an
and hence
1
4.4 2140, 0)=—.
(44c) 4'=%0,0)=—

4.2. The plate paradox for the three-dimensional and Reissner-Mindlin models. We
will analyze in detail the case of Reissner-Mindlin model only. The case of the
three-dimensional formulation can be dealt with analogously.

THEOREM 4.2. Let h be fixed and sufficiently small, and let wi! be the Reissner-
Mindlin solution on &' corresponding to unit load f =1 on »'" and hard simple support
on d0'™, n=0,1,2,- . Then if wi§) is extended by zero onto w'®, we have

(w5~ ] 2 >0,

J (Wl — Wi dx, dx, | Za >0
w!®
or all n= n,, n, large enough.
g
Proof. By Theorem 3.1 we have
[wh— wiZ), o1 — 8%, m'— mi, ¥ — YUz = Y k| )21 at,
flwl?—wi, 0% — 8%, mR — m, Y& iU = Ch?Y/ k| f 1|21 0.

Note that || f| -, .= C, independently of n. Using Lemma 3.3 and Theorem B.3, we
see that

Lwk? = wiellT w671 - 0k T um] = CH,
[l = w2 oo+ 9381 — 03 o) = 2,
where C is independent of n and h. On the other hand, we have by Theorem 4.1,
Wi = wi|[ | >0 as n->o0,
i = iy o> 0.

This shows that for sufficiently small h there is @ > 0 such that || Wi — wig)||, L= a >0
for all n>n,.
Realizing that (in our case for f=1)

E%l = *'“J' . W[R"] dx1 dJCzs E[}g]: “'j W‘:}?] dx] des

El= —J wiel dx, dx,, ER'= —J widl dx; dx;,
we also have

Za>0 asn>ng. 0

‘J- (0% — wi) dx, dx,

Using Theorem 3.2 and analogous arguments, we get Theorem 4.3.
TBEOREM 4.3. Let h be fixed and sufficiently small and let u§™) = (u{, ul3), i)
be the three-dimensional solution of the plate-bending problem on Q'™ corresponding to
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the load p = D and hard simple support, n=0,1,2,- - - . Then if ul}! is extended by zero
onto Q9 we have

lugs! - wldl 1 am= a >0,

h h
.L[O] (ugg] (xl s X2, E) + u([)g](xl s Xa, '2')) dx, dx,

Jor all n = ngy, ng sufficiently large.

Theorems 4.2 and 4.3 show that hard simple support leads not only to the paradox
in the Kirchhoff model but also to those in the three-dimensional formulation and the
Reissner-Mindlin model. {In § 4.3 we will show that the paradox occurs neither in the
three-dimensional formulation nor in the Reissner-Mindlin model when the simple
soft support is imposed.)

The proof employs the fact that the Kirchhoff model approximates very well the
Reissner-Mindlin and three-dimensional formulations for the hard support. This shows
that the circular plate and polygonal plate solutions are far apart in the entire region
and not only in the area close to the boundary, where boundary layer effects occur.

The results above show that plausibly unimportant changes in the boundary
conditions could lead to significant changes in the solution through the entire region
even if the three-dimensional linear elasticity model is used. We expect that the paradox
will also occur in nonlinear formulations. For engineering implications of effects of
this type we refer to [6].

Za>(

4.3, The “nonparadox” in case of soft simple support. In this section we will prove
that, in contrast to hard simple support, the solution on w'”! converges to the solution
on »'™ for both the Reissner-Mindlin and the three-dimensional plate model. This is
in obvious contrast to hard simple support. We will elaborate in detail on the case of
the Reissner-Mindlin model. The analysis of the three-dimensional model is analogous.

Let us denote

B, =M p=1,2,---,
@0=w“]
@0 = N — ™, n=1,2---

(see Fig. 4.2).
Let L= (L (@) u=(w, 8)eL and

Fo={ue L: we Hi(o™), g (H'(0!))?),
F,={ueL:we H(«™), w=0o0n 2%, g (H' (0"},
T, ={ucL:we H(o™), 8 (H' (")), 8 (H (D), m=nn+1,- -},
Lom={ueL: we H(0'"), w=0 on 29,
fe(H (™)) 8 (H (@)Y, j=mm+1,---}.
We have ¥, < %y, Fy= 7, and
Zum =%, Zom = T om.
All the spaces are embedded in 7. Furthermore, let
Z,={ucL: we H'(o!), 8 e (H"(&'")?},
Z,={ueZ,: we H{o")},

AR(w, 852, ¢) = ;0 AR (u, v),
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FiG. 4.2, The configuration of the domains @, 2, 2,.

where %5 is given in § 3.2 for the region & and 2 has the same form but is integrated
only over @', Analogously we define .91‘_.‘;["], etc. Finally, we supply J, with the norm

lulf= T stic(u,v).

To see that || - || is indeed a norm, assume that u =(w, 8) € , and ||u| = 0. Then, since
the first term in the expression for sf3 is the same as in the case of plane elasticity
(where 8,, 0, play the role of the displacements), we have on Z;, 6,=a;+¢Xx;,
6,= b;—¢;x,, and because |8 — Vw{[o o =0 we get ¢;=0. Hence w=d;+ a;x, + b;x, on
@;, and so, because we Ho(w'"') we get w=0and a;=5b,=0,j=0,1,2,- - - (see also
Appendix B). Hence u =0 and accordingly, ||| is a norm on J,.

For ue Z, let ||ul| 2 m= 2% (4, u). Then by Theorem B.1 in Appendix B,

(4.5a) ir;f |8, —(a+ex;), 82— (b —cxy)] 1.0 = C, ||| got=,

(4.5b) i?g [[w—(d + ax; + bx,+ cx, %) |1, w1 = C, ||t o1,
a0

Here C, depends in general on o "L

Assume now that for an n,>0

L]
k]

(4.6a) f has compact support in @

[ ]fX2 dxl dx2= J’

w

(4.6b) J’ ; ]fdxl dx2= J . ]fxl dx1 de='[
wl®o wl™o

o

fx1 X2 dx1 dXQ=0
[np)
and that n> ng, m>n,. Then for uc J,, n=n,,

= G|l uf-

J. [ ]fwdxl dx,

j - fw dx, dx,
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Hence for n, m = n, there exist unique
u(F)eFn, W(TNeTn, WLrm)€Lnm wZyel,
such that

tr(u(,), v) ='[ o fEdadx, Yvelz eled,

and analogously for u(7,), u(%£,.,), u(Z,). Obviously u(%,) = vl and u(Z,)=u'",

and u(%£, ) =u(Z,) on o™ and is zero on 9.
Using Theorem C.1 we get

(4.7a) uRl = u(Fo) = u (L) + p(Fo, F0),

(4.7b) [#{FD = (TP + || p(Fo, F)*,
(4.7¢c) lp(Fo, FI =0 as n—oo;

(4.8a}) (T, =u(Fo)r+p(Tn, Fo),

(4.8b) (T = (L + | p( Fs F)IP,
(4.8¢) (T, F)|+0 as n-o0;

(4.9a) W(Epm) =u(F) + p( Ly o)

(4.9b) I (E ) IIP = | ( LI+ [ p( L s LI,
(4.9¢} lo(Lnm, Fd| >0 as m—co;

(4.10a) (T )=t L) + AT oy Eom)s

(4.10b) Tl = |l u(Z ) I+ 1 0(T s L) I
{4.10¢) he (T s Enm)| =0 as n—>oc0,

Now let £ >0 and r»>max (n(e), ny). Then we have
lp(Fo, SO <6, Np(Tn, LI <e.
Using (4.7)-(4.10) we get
(LI + 12Ty F* = (T ) IP = | (L) P+ [ A T s L) I
= |u(FI+ o (Lps SN+ 0T, ZuIP
=u(FI ~ lo(Fo, LI+ p (L, F)I?
+p(T s L) I”
and hence for n, m Zmax (n(e), ny)
10T, S+ 0 (s FI = 0 (Loms S+ [2(T s Lo P26,
which yields
lo(Lnms Fa)l* =26
Therefore
u(Fo)—ulL, ) = u(F) —ul(F,) +wl(F,) ~ul( L} = p(Fo, Fu) — p{Enns F0)
and hence
lu(Fo) — (&, M = e +v2e = Ce'.

Because, as above, u(%, ,} = ui on w!”

or in any 7, for m fixed.

1, and zero on @°, ¥ > u'Y! in the space J,
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Remark 4.2. Note that until now we have not used Theorem B.3 {Appendix B),
but only Theorem B.1.

So far we have assumed that f satisfies (4.6). Let us now study the general case.
Assume that fe L(o!™).

Let us first note that if u =(w, 8)¢ %, ,, then we Hy(»'™) and

(4.11) Wl iwn=lIwll i wm= Cllul

with C independent of n because of Theorem B.3.
For 0 <A <3 we denote

Ra={(x,, x:): x}1+x3>1-A},
IRy ={(x;, x%): xT+x3=1-A}.
Then
Wlio,rs = CAlIw]|y o= CAJlull,
Iwlloor, = CAYH Wy o= CAYZ[lul.

Now let
f onR,,
fA={ o

0 one®-R,,

ga=(a+bx,+ cx,+ dx; x3)0,,

where €, is the Dirac function concentrated on 6R, and g, b, ¢, d are such that f,+ g,
satisfies (4.6). _

For n> n, 5 such that Ry < w!™.s), let uy(#, ) and u,(¥,) be the solutions when
instead of f the function f, is used. Then we get

”yA("(gn,n) - y(gn,n)n = CAl'lz,
Hl‘a(yo) —u(F)| = CAUZ,

where C is independent of n and A but, in general, depends on £ Hence we can select
A so that CA'?< & Furthermore, we have shown

ualZ, )~ ualFo)|| << &
for all n= n,{(e} and therefore
|u( &, n) —u(Fo)l| <3e
for all nz n,(&). Since u(¥,)=u% and u(F,,)=u), we get
lek’~uk[>0 as n-co,

Here ulf=(wid), ¢77) is understood to be extended by zero on @ and |-|| is the
norm in 7, (note that wile Hi(w'), but 8% ¢ H'(«!)) although 6%'c H'(s!™).
Because the functions in H'(w!™) with compact support are dense in Hy(w®), there
is w"le Hi(w'™") such that {w!”—w"|=¢ for all n=n,(e). Hence with "=
(W™, 812)) we get

@™~ uR"| >0 as n-c.
Hence, using Theorem B.2 (Appendix B), we have
| Wil = wil| 5oty + (|88 — 85| 32 o, > 0 as n>co,

In summary, we have proved Theorem 4.4 below.
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THEOREM 4.4. Let fe L (o' and let u'M=(wi® 8U)  respectively, u'd!=
s 14 Vs

(w3, 917}, be the Reissner- Mindlin solution on o', respectively, '°), for soft simple

support and fixed h. Then

IwR? = wR oty + 8% = 0% 1oty » 0 as n >0,

We see that in contrast to the hard support there is no plate paradox when the
soft support is imposed. Hence soft simple support is physicaily more natural than
hard simple support.

Remark 4.3, In Theorem 4.2 we assumed that f e L,(w') while the solutions ul¥!
and u%! were defined forany fe H™'(0!?), respectively, fe H™ " ("™ If f has compact
support, then Theorem 4.4 also holds for f € H"(w[‘”) We can weaken the assumptions
on f in Theorem 4.4, e.g., so that fe H*(w!™), a > —1, but the proof will not hold for
fe H ' (o'™).

Remark 4.4. We have assumed that w1 is the sequence of regular polygons. This
assumption was used only when we were using Theorem B.3. Hence Theorem 4.4 holds
for any regular family of domains (see Appendix B). If f satisfies (4.6), then there is
no need for regularity (see Remark 4.2) of the family of domains under consideration
and Theorem 4.4 holds in the full generality.

Remark 4.5. We have assumed in Theorem 4.5 that k> 01is fixed (i.e., independent
of n). We could also consider a two-parameter family of problems where both # and
h vary. Then, for n fixed and k>0, u'z'—> u% (and hence for h— 0 the difference
between soft and hard support disappears). Hence, combining the results of this section
with § 4.2, we see that

lim lim uR)#hm Hm u 43

>0 h>§ h=0 n=x

In a way analogous to the proof of Theorem 4.4, we can prove Theorem 4.5.

THEOREM 4.5. Let h be fixed and u'® respectively u'™ be the solution of the
three-dimensional plate problem on Q' respectively, Q'", with soft simple support.
Assume that the load p € L,(w'™). Then

o]

Jul—ut" N, o> 0

as n-> oo,
Remark 4.6. Remarks 4.3-4.5 are also valid for the three-dimensional plate model.

4.4. Some additional considerations. As we have seen, the Kirchhoff model (bi-
harmonic equation} leads to paradoxical behavior for hard simple support. The same
mathematical formulation also describes other problems and hence leads to the
same paradoxical behavior.

As an example, we mention the problem of a reinforced tube shown in Fig. 4.3a, b.
The reinforcement is attached by an unextendable tape to the exterior surface. Here
we have the paradox that the stress caused by hydrostatic pressure is ditferent for the
polygonal and circular outer surfaces.

Analogous examples can very likely be found in fields other than elasticity where
the problem reduces to the biharmonic (or polyharmonic} equation.

We have shown the paradoxical behavior for » » o0 and h relatively large compared
with 1/n (see Remark 4.5). Hence the question arises of how large will be the difference
between hard and soft support in three-dimensional formulation for n fixed and A > 0.
To this end we consider a square plate with sidelength equal to 1. In Table 4.1 we
give the values of

(BBl [y [ B

|ESOFT| |EHARDl
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AO

(a) (b)

F1G. 4.3. Reinforced polygonal and circular tubes.

TABLE 4.1
Percent h=01 h=0.01
n 34.68 11.69
& 20.21 2.03

Here by Esopr and Eyagp we denote the (three-dimensional) plate energy for soft and
hard support, and by E, the plate energy of the Kirchhoff mode! for the Poisson ratio
v =0 (see also [7]).

Appendix A. Well-posedness of variational problems (3.4), (3.7), and (3.8). We use
the following basic theorem (see [18]),

THEOREM A.l. Let H be a Hilbert space and & be a bilinear form on H x H that
satisfies

{AD) Bu, v)=R(v, u), u, ve H,
(Al) |%(u5 v)igcilu”H“v”H: u,veH,
(A2) sup Blu,v)=c|u|y YuceH,
velH
oty =1

where C and c are positive constants. Then if F is any bounded linear functional on H,
there is a unique u € H satisfying

(A3) B(u, v)=F(v), ve H

In applying Theorem A.l to problems (3.4), (3.7), and (3.8), we choose the
folowing notation.
{a) The three-dimensional model (3.4):

H=Ux#,

B(u, g, 0,7)=(a8 " 1)ae — (£(u), Doe— (2, £(0))
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{b) The Reissner-Mindlin model (3.7):
H=H)o}x VX x[L(w)],
Biw, 0, m, vz, ¢,k O=0m Tk —(£(8), K)a— (ele), m)x
—{(0-Yw, )~ (e —Yz v)+(A/x)(y.0),
F(z, ¢,k §)=~(f, 2).
{c) The Kirchhoff model (3.8):
H=WxVxIxV,
B(w, 0, m, 7,2, ¢,k {)
=(m, T ks —((8), B)oc — (e(@), m)x — (0 —¥w, ) — (¢~ ¥z, 7),
Flz, 0,k )=~/ 2).
Then in each case, 9 is symmetric, F is a bounded linear functional on H, and
the variational problem takes the general form (A3). Thus it suffices to show that (A1)
and (A2) hold.

THEOREM A.2. Assume that e is a bounded Lipschitz domain and that the parameters

v, h, and x satisfy
O0=sv<i, hsh=h', fr=r=g"!

3

where h > 0 and k > 0 are given. Then in each of the three cases above there are constants
C=C(h &) and c = c(w, b, ) such that (A1) and (A2) hold.

Proof. In view of (3.2) and (3.6) the mappings § ": # > % and T™': X > X are
uniformly bounded in the assumed range of ». It then follows easily that the assertion
concerning (Al) holds, so let us concentrate on showing that (A2) is true.

(a} The three-dimensional model. Let (u, o) U x & be given and let

(gﬂ)g:%tr(g)(sys I',j:l,Z, 3.

Then [ig||% = lig — goll % +3lltr (2)l|3.q and it follows from (3.2) that

D
(a, S"lg)w=E{(1+ le — ool Fe+(1-20) | ool %}
(A4)

We use the following lemma, which is related to the well-posedness of the Stokes
problem. For the proof see [12].

LemMA A.1. There exists vy U and a constant C, depending on w and h such that
the following inequalities hold

losll o= Cilltr (@)]lo0,
(div g, tr (@) Z|tr ()3 a-

With v, as in Lemma A.1 we now set (o, 1} = (—u— 8py, g—S"‘g(y)), where & is
a constant to be specified shortly. Then by (Ad4), the inequality (7, 1)e=
(s/2)| 7|l %+ (1/25)|| 72| 3 (5> 0), and Lemma 3.1, we have that

B(u, a; 8, 1)={aq, §'a)%+38(tr(a), div v,)
+8(g — o, (vo)) + 8[| £())| 5~ 87(a, S 7' £ (1))
=(5h’ -G8 — C352)”g'_ g’o“iﬁ (68 — Ca8%)||tr (g)||3.n+ 6152”1_4 | %,n
= min {{54° — C,8 — C382, 46 —3C,5% 5152}“'1‘”%,04‘ “2’”%&{)
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Thus, choosing & to be a sufficiently small positive number, we have found (», 1) e U X &
such that ||o, 7]l = Clly, olln and By, g; v, 7)Z ¢|lu, gl|%, where C and ¢ depend
only on @ and h. Hence (A2) is true in case (a) with ¢ depending on @ and k.

(b) The Reissner-Mindlin model. Given (w, 8, m, y) € Hy{w)x V x 3 x [Law)]?,
let (z, ¢,k {)=(-w,—8, m-38e(8),y 6(8 ¥w)), “where & is a constant to be
specified. Then noting that by (3.6), (m T 'm)z||m||3/(1+»), and recalling Lemma
3.3, we have

h2

hZ
sote-gutt-o(E)a-20
= K K4 =

1+

h? h?
+(B)(1-co)ivi.
1 h2 2
zmin{i—ruCIS, o8 (1#(:2 h )}Hw 6 m, ylli.
vV K

Thus if & is small enough we have found (z, ¢, k, {)€ H such that |z, ¢, k || =
Cllw, 8, m, ¥l and B(w, 8, m; z, @, k, {) = c|w, 8, m, v||3,, where the constants depend

only on o, h, and <. These prove the assertion in case (b).
{c) The Kirchhoft model. Given (w, 8, m, v)e H, let (z, ¢, k, {)=(-w, —8— 8¢,
m—8e(8), v—8{,), where goe V and {,e V' are defined so as to satisfy

1
g(m—C8)||m||jf+ 5||E(9)”3£+ 81e-Yw(i.

H?OHI.w:{I:}’HV's (;ya (P0)=||7”2V'a
|!§0Uv'=1|ﬁ—gwli1,w, (8- VW gu)*“"e anlm’

which obviously is possible. As in case (b), we then find that for a sufficiently small
5, Yz ek Lllu=Clw, 6, m yln and B(w, 8, m, y; 2, ¢, k, D)z c||w, 6, m, y|}, where
C and ¢ depend only on @, and so the assertion follows in case (c).

Appendix B. The Korn inequality. Let « be a bounded Lipschitz domain and
define the seminorm

1/2
[ﬁlﬁ(w]:{"’ Z |‘€u(9)| dxl dx!} 2 Qe(Hl(w))z;

hLj=1
where £;(8) =3(36,/6x;+36;/8x;), and let
lulko =8k T 10 -Ywlin, u=(w,8), weHYw), fc(H'(w))

TueoREM B.1. There is a constant C depending orly on « such that for any
fe[H' (o))

(B1) ng{{” 0, —a~— bx2||iw+ “92“ c+ bxl”%,w}g Ci§|2ﬁ(w),
(B2) iglg |w—€a =+ bx,+ ex, + dx, %3} 5t = Clé| o -

Proof. Inequality (B1) follows immediately from the Korn inequality for plane
elasticity (see [19]). Inequality (B2) follows from (B1).



Downloaded 12/04/25 to 128.62.208.154 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

574 I. BABUSKA AND J. PITKARANTA

LEmMA B.1. There exists a constant C depending on @ such that for any (w, 8) ¢

[HY ()]
||w||%,w+||a||%,m§c{m&w]  ds}.
e

Proof. We apply the standard contradiction argument. If the assertion is not true,
there is a sequence {w,, 8,} such that

” Wn, _Bn”l,w = ls

||_3n " E(m)—>0,
18, Tl >0, Iw‘f.ds»o
dw

as n—>o0, Then by Theorem B.1, {8,} contains a subsequence {which we denote
once more by {#,}) such that 8, »(a— bx,, ¢+ bx;) in [H'(w)]*. Furthermore, since
|16, —Vw,|o.—>0, there is another subsequence (once more denoted by {8,, w,}) so
that w,>w in H'(®). Hence b=0 and w = ax, +cx,+ d. Because [ w? ds >0 we get
a =c¢=d =0, contradicting the assumption ||w,, 8, 1. = 1. O

We immediately get Theorem B.2.

THEOREM B.2. There exists a constant C depending only on w such that for any
u=(w 0)e Hlw)x[H (@)]

(B3) w30+ 18110 = Clulk,..

Let us now consider a family % = {w} of Lipschitz bounded domains. The family
will be called regular if there is a (uniform) constant C so that (B3) holds for all we &.
Let us now consider a special family of domains. Let »!” be a unit circle and
w!" be a sequence of regular n+3-polygons such that
e gl gl o o)

[n]

w"ls @

as p—>xX0

in the sense that for any x € ' there is n(x) >0 such that x € w!™ for all n> n(x).
We let F,={0'" 0" o? ...}

TureorEM B.3. T?le fam:ly F, is a regular family of domains and hence there exists
C >0 such that

Wi+ 1811 i = Clulf ot

Jor any u=(w, 8) € Hy(o") x[H' (0", n=0,1,2,- -
Proof. For n> n, the o' are star-shaped domains and
det™ = {(x,, X2): X, = p,(0) cos 8, x,= p,(0) sin 6, 0= § =2},

where p,(8)~ 1 and p,(8)- 0 uniformly. Let Q, be the one-to-one map of w!™) onto
' defined by

Q. (p{8#)cos 8, p(#) sin 8) = (p(#) cos 6, p(@)sin 8} for p(@)é%

1 p(6)-(b) )
(2 (0= 2] 8¢

(1 p(6)— ()

2 (@)= + )smﬂ forp(9)>—



Downloaded 12/04/25 to 128.62.208.154 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

THE PLATE PARADQX FOR HARD AND SOFT SIMPLE SUPPORT 575

If Qu(x;, %) = (£, &) then we have & = £"(x,, %), & = &(x,, %), x, =x"U(&, &),
x;=x5"(£, &), and £ > x;, (8&:/0x;) > 8y, xtMs g, (0x,/34;) > 8, i, j=1,2 a8 n> 0,
uniformly with respect to (x,,x))ew!™ and (&,&)ew™. Let u=(w, 0)e
Hi{(o")yx (H'(»™))? and let

ii=(w, 8), (&1, &Y =ulxlé, &), (&, &)
Then 7 < Hy(o™) x (H'(©)?) and by Theorem B.2 we have
113 e+ |87 oo = CliE] R 0

and also

1%, = Wil 1,wim(1 + (1)),

10111t == [| 8]} 1ta(1+2(1)),

1] oo = |t g o+ o (D (| W]l1,um1+ [ 81]1,007)
as n— o0, Hence

IwilT (1 +2(1) + {8113 uin(1+e(1)) = CllulR ot + 2 (D Wl i+ 2]l w01,

From this we see that for n> n; the family is a regular one. Using Theorem B.2, we
then see that the whole family %, is regular. 0

Appendix C. A projection theorem.
Tueorem C.1. Let H be a Hilbert space, let {H,} and {K,} be sequences of closed
subspaces of H such that H, < H,., and K,2 K, n=1,2,-+-, and let

H,=UH, and K,=NK,.

Furthermore, let P, and Q,, respectively, P,, Q,, be orthogonal projections onto H, and
K., respectively, Hy, Ky. Then for any ue H

| Puse = Poui] >0, | Quu— Qoul{ >0

as n-» o,
Proof. First observe that | Q.. u]=|Qu+:1Quul=]Quul, so |Q.u|—»g=0
monotonically. Furthermore,

1Qutt = Qrejttl| = [ Qutt | = 20 Qutty Qujtt) + i Qe * = [ Qute | = | Qi

so {Q,u} is a Cauchy sequence. So Qu— v and ve K, for all n. Hence ve K; and
since (v, w)=lim, o (Q.u, w)=hm .. {4, Q,w)=(u, w) for all we K, it follows that
v=Quu.

Let us now consider the projection operator I — P, = é,.,. Then Cf),, projects M onto
H!and H,> H!,, Hence Qu=u—Pu->u—ve H.. So P,u—>ve H, and by the
same argument as before, v = Pyu o
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