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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT*

I. BABUKAt AND J. PITKRANTA*

Abstract. This paper studies the plate-bending problem with hard and soft simple support. It shows
that in the case of hard support, the plate paradox, which is known to occur in the Kirchhoff model, is also
present in the three-dimensional model and the Reissner-Mindlin model. The paradox consists of the fact
that, on a sequence of convex polygonal domains converging to a circle, the solutions of the corresponding
plate-bending problems with a fixed uniform load do not converge to the solution of the limit problem. The
paper also shows that the paradox is not present when soft simple support is assumed. Some practical
aspects are briefly discussed.
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1. Introduction. The Kirchhoff model of a plate is usually accepted as a good
approximation to the three-dimensional model for thin plates. In the case of simply
supported polygonal plates, however, the Kirchhoff model"is known to suffer from
unphysical phenomena that can lead to a large error of the model in some situations.
In particular, the following paradox, referred to below as the plate paradox, occurs
[2], [4]. Consider a sequence {ton} of convex polygonal domains approaching a circle.
For each n, let wn be the transverse deflection corresponding to the Kirchhoff model
of the plate-bending problem, where the plate occupying the region tan is simply
supported on 0ton and is subject to a uniform load p(x)-1. Furthermore, let wc be
the solution to the limit problem, i.e., that on the circle. Then as n-> oo, the sequence
{wn} converges pointwise, but the limit woo is different from we. For example, at the
center of the circle the error of woo is about 40 percent. Some other related plate
paradoxes are given in [14], [15]. Practical implications occur, for example, in the
finite-element method when the domain is approximated by a polygon with sidelength
h->0. For further aspects see also [8], [18], [21], [23], and [25].

It is often assumed that the plate paradox is caused by the assumption of vanishing
vertical shear strains that is implicit in the Kirchhoff model. This has been supported,
e.g., by a note (see [3]) that the paradox is not present when the Reissner-Mindlin
model instead of the Kirchhoff model is used. The aim of this paper is to locate the
source ofthe paradox more precisely. We show that it is the way the boundary conditions
are imposed in the Kirchhoff model that causes the paradox, and not the overall
assumption of vanishing shear strains.

In the three-dimensional model of the plate, the boundary condition of simple
support is typically imposed by requiring that the vertical component of the displace-
ment (or at least its average in the vertical direction) vanish on the edge of the plate.
On the other hand, the Kirchhoff model effectively imposes the more restrictive
condition that all tangential displacements must vanish on the edge. Of course, it is
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552 i. BABUKA AND J. PITK,RANTA

also possible to impose such "hard" boundary conditions in other plate models, e.g.,
in the Reissner-Mindlin model (cf. [22]) or in the three-dimensional model itself. We
show that in such a case, the plate paradox occurs in both the Reissner-Mindlin model
and in the three-dimensional model. On the other hand, we also show that the paradox
does not occur in these models in case of "soft" support, where only the vertical
displacements are restricted on the edge ofthe plate. Hence, we are led to the conclusion
that the paradox is caused by the hard boundary conditions that are intrinsic in the
Kirchhoff model.

Our results are based on energy estimates relating the three-dimensional model
and the Reissner-Mindlin model to the Kirchhoff model. Such estimates can be derived
by combining the energy and complementary energy principles associated to the
plate-bending problem. They were, in fact, applied early by Morgenstern 16], 17] to
prove that the Kirchhoff model is the correct asymptotic limit of the three-dimensional
model as the thickness of the plate tends to zero. Although the assumption of a smooth
domain is implicit in Morgenstern’s work, we can easily extend the analysis techniques
of [16] to more general situations. In particular, we show here that in a sequence of
convex polygonal domains converging to a circle, the relative error of the Kirchhoff
model, when compared to the three-dimensional model with hard support, is uniformly
of order (h/2) in the energy norm, where h is the thickness of the plate. Moreover,
by similar techniques we show that the gap between Reissner-Mindlin and Kirchhoff
models is uniformly of order (h) under the same assumptions. Finally, we show that
on a smooth domain, the three models are at most (h/:) apart. Hence we conclude
that the plate paradox must occur in the hard-support models if h is fixed and sufficiently
small.

Let us mention that our results are in parallel with recent benchmark calculations
[7]. These calculations confirm, in particular, that the error of the Kirchhoff model
with respect to the three-dimensional model is primarily due to the assumed hard
boundary conditions on simply supported polygonal plates. For example, in the case
of a uniformly loaded square plate of thickness h -side length/100, the relative error
of the Kirchhoff model in energy norm is approximately 11 percent when compared
to the three-dimensional model with soft support, and approximately 2 percent when
compared to the hard-support model [7]. This example also shows that the error of
the Kirchhoff model may be quite large even for relatively thin plates of simple shape.

The results above show that imposing various boundary conditions that are
seemingly close, such as hard and soft simple support, can influence the solution in
the entire domain and not only in the boundary layer. Very likely such effects also
occur for other boundary conditions for both plates and shells. Therefore, since any
boundary condition is an idealization of reality, finding the "correct" boundary condi-
tions is an important and sometimes difficult part of building a dimensionally reduced
model. For example, both soft and hard simple support can be poor approximations
of the real "simple" support.

The plan of the paper is as follows. Section 2 gives the preliminaries and basic
formulations of the plate problems. Section 3 elaborates on the variational formulations
of the plate problems and presents various energy estimates. Section 4 addresses the
problem of the plate paradox. Finally, Appendices A, B, and C present some auxiliary
results needed in 3 and 4.

2. Preliminaries. Consider an elastic plate of thickness h that occupies the region
gl-to x (-h/2, h/2), where to RE is a Lipschitz bounded domain. We assume that
the plate is subject to given normal tractions p (i.e., the load) on to x {-h/2} and
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 553

to x {h/2} and that it is simply supported on 0to x (-h/2, h/2) in such a way that if
_u (ul, u2, u3) is the displacement field, then

(2.1) u3(x) O, xeOtox --,
and the other two conditions are natural boundary conditions describing homogenous
(zero) components of tractions. Later this condition will be called the soft simple
support. If we assume for the moment that no other geometric boundary conditions
other than (2.1) are imposed, the plate-bending problem can be formulated as follows.
Find the displacement field _Uo that minimizes the quadratic functional ofthe total energy

F(_u) = h(div _)2__ ]’ [Eij(_)]2 dx1 dx2 dx3
i,j=

1

in the Sobolev space [HI(I-)] under the boundary condition (2.1). Here e {eij} i,j=l,

eij =1/2((Oui/Oxj)+(Ou/Oxi)) is the strain tensor, and A and/x are the Lam6 coefficients
of the material, i.e.,

Ev E
l+it

where E is the Young modulus and v is the Poisson ratio, 0_-< v_-< 1/2. We also assume
that the surface traction p is symmetrically distributed with regard to the planar surfaces
of the plate, i.e., we consider a pure bending problem.

So far we have assumed a special model of simple support based on simple
geometric constraint (2.1). Of course there are many other possibilities. Later we will
discuss another model--of hard simple supportuand will discuss the effects of these
models of simple support on the solution.

It is well known that if h/diam (to) is small, the three-dimensional plate-bending
problem can be formulated in various dimensionally reduced forms (see, e.g., 1], 11],
[22]). Here we consider two representatives of such formulations that are used in
practice: the Kirchhoff model and the Reissner-Mindlin model (cf. [22] and the
references therein).

In general, when to is fixed and h- 0, the three-dimensional formulation and the
dimensionally reduced models converge to the same limit, provided that the load p is
appropriately scaled (see below). Hence for sufficiently thin plates the models give
practically the same solutions. However, as will be seen later, what is "sufficiently
thin" can depend strongly on to, i.e., the convergence can be very slow in some situations.

In the Kirchhoff model, we approximate the three-dimensional solution as

OWK OWK )Uo(Xl, X2, X3) --X3 (Xl, X2) --X (Xl, X2), WK(Xl, X2)
0X 0X2

where wK minimizes the energy

(2.3) FK(w) = u(Aw)2+ (1- It)
i,j=l k’OXiOXj] dXl dx- fw dxa dx2

in the Sobolev space H2(w) under the boundary condition

(2.4) w 0 on
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554 I..BABUKA AND J. PITK,RANTA

Here f is related to p as

P--- D
Eh3

(2.5) f-D’ 12(1- ,2)"

When comparing different plate models with fixed to and variable h we will assume
below that f (and not p) is fixed. This ensures that the different models have the same
(nontrivial) limit as h- 0. For example, defining the average transverse deflection in
the three-dimensional model as

1 f hi2

U3(. X3) dx3,Wo - ,I-hi2

we can show (under fairly general assumptions on to (see [10], [11], [16], [17], and
3 below) that Wo- 0 as h 0.

In the Reissner-Mindlin model, we approximate _Uo by

_l’/o(Xl, X2, X3) (--X3OR,I(X1, X2), --X3OR,2(X1, X2), WR(X1,

where (we, _Oe) minimizes the energy

FR(W,_O) = ,(div_0 +(1- u) [e,j(_0) dx1 dx2
i,j

(2.6)

p I_0- wl axe-
in the Sobolev space [I--/(to)] under the boundary condition (2.4). Here =6(1
where o O(1) is an additional shear correction factor that may take various values
in practice.

We point out that the Kirchhott approximation to _uo satisfies, in addition to (2.1),
the boundary condition

(2.7) (/,/1 tl + lg2t2)(X) 0, X e 0to X --,
where _t (tl, t2) denotes the tangent to 0to. This suggests that we should also consider
the original plate-bending problem under such more restrictive geometric boundary
conditions. Below we refer to the boundary conditions (2.1) and (2.7) and their
counterpart in the Reissner-Mindlin model, i.e., (2.4) together with

(2.8) Olt d- Ozt2 --0 on Oto,

as hard simple support in contrast to conditions (2.1) and (2.4), which we refer to as
soft simple support. Hence, when using the Kirchhoff model we have in mind hard
(not soft) simple support. Later we will show that the incapacity of the Kirchhoff
model to represent soft simple support can be a severe deficiency of the model on
polygonal domains.

3. Variational formulations of the plate-bending problem. Energy estimates. In
3.1-3.3 and in the related Appendix A, we summarize first some basic characteristics

ofvariational formalisms and energy principles associated to the plate-bending problem
in its various forms. These results are basically known, but we present them here for
the reader’s convenience. In 3.4 we prove some energy estimates relating the Kirchhoff
model to both the Reissner-Mindlin model and the three-dimensional model, using
the results of the previous subsections.
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 555

We assume that the plate occupies the region o x (-h/2, h/2), where o is a
Lipschitz bounded domain. Our particular interest is in the cases where o is either a
convex polygon or a smooth domain.

We denote by HS(o), respectively, HS(f), the usual Sobolev spaces with index
s > 0. The seminorm and norm of the spaces [H (o)] or [H (0)]k are denoted by
[. 1, and II" I1,, respectively, [. [,, and I1" ,,. By (.,.) we mean the inner product
of [L()] or [L()]g, and by (., .) the pairing of a space and its dual. The dual
space of H() will often be needed below and is denoted by H-().

3.1. The three-dimensional model. Let us denote by N the space of horizontal
rigid displacements of the plate

N={(lXl+3x2,x2-3Xl,O), i, i=1,2,3}.

We define the space of (geometrically) admissible displacements in the case of soft
simple suppo as

(3.1a) U= e[H(a)]3"u3=OonOx -, (,f)=0 VeN

and in the case of hard simple suppo as

(3.1b) U= ge[H(a)]3"u3=tu+tu=OonOx
2’ (u,v)=O VveN

(For simplicity, here we also remove all the horizontal rigid displacements in case of
hard suppo.) Fuhermore, we let stand for the space of stress or strain tensors
defined as

= {e ()
and introduce a linear mapping S" representing a scaled stress-strain relation-
ship of a linear elastic material:

(). D-[I tr ()+],
where I and are the Lam coecients and the scaling factor D is as in (2.5). Then
S is one to one and

D
(3.2) (S-),. [(1 +) tr ()].

Moreover, S and S- are self-adjoint if is supplied with the natural inner product

i,j=l

Let us fuher define the bilinear forms

(, ((), (fl), , f e u,

and the linear functional

Q()= f v3 ", + v ",- dx dx,

where it is assumed thatf L(), to imply that Q is a bounded linear functional on
U (by standard trace inequalities).
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556 . BABUKA AND J. PITK,RANTA

In the notation above, the energy principle states that the displacement field _Uo
due to the load f=(p/D)L2(o) is determined as the solution to the following
minimization problem. Find _Uo U that minimizes in U the functional

(_u) 1/2(_u, _u)- Q(_u).

The existence and uniqueness of go is due to the following coercivity inequality,
known as the Korn inequality (cf. [19]).
LMM 3.1. If U is defined by (3.1a), there is a positive constant c such that

(3.3) (u,u)>cllull.... 1,a, u_U.

We point out that the constant in (3.3) depends on o (and h), although it is
positive for any given Lipschitz domain. In Appendix B we show that the constant in
(3.3) remains uniformly positive over a certain family of domains, a result needed in
5 below.

Given f and the corresponding displacement field _Uo, let Vo S_Uo be the corre-
sponding (scaled) stress field. The pair (_u, V)= (_Uo, fro) is then the solution to the
following variational problem. Find (_u, V) U x X such that

(3.4a) (g, _z)- (_e(_u), _z)e 0, _re g(,

(3.4b) (g, _e(_v))= Q(_v), _v U.

It can be easily verified following [5] and [9] (see Appendix A) that the solution to
(3.4) exists and is unique.

Finally, we mention that according to the complementary energy principle, go is
found alternatively as the solution to the following minimization problem [19]. Find
go e X that minimizes in X the functional

(e) 1/2(_, _)

under the constraint (3.4b).
In 4 below we need the following corollary of the two energy principles (cf. 16]).
LZMMA 3.2. For any (_u, g) U x 2(such that g satisfies (3.4b), thefollowing identity

holds"

(_Uo-_, _Uo- _)+1/2(eo- e, _o- e) (_u)+ (_).

Proof. It follows from the energy principle that

(U_o, v)= O(v), v_ e u,
and from the complementary energy principle that

(_o, _.) 0, _r e : (z, _e(_v))e O(_v) V_v e u.
Therefore, in particular, M(_Uo, _u)= Q(_u) and (go, g)= (_O’o, go), and hence

-s(_Uo-u,_ _Uo- u) + (_eo-_e,_ _eo-_e)= [1/2 se(u,_ _u) se(_Uo ,_u) +- (, ,)]_

+ [1/2(_o, _o)+}(_o, _o)-(_o, e)]

[(_u)+ (_)] + [-(_Uo, _Uo)-}(_o, _o)]

(_u)+ (_).

3.2. The Reissner-Mindlin model. In the Reissner-Mindlin model geometrically
admissible displacements (w, _0) span the space H(o) V, where either

(3.5a) V= [Hi(o))]2
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 557

or

(3.5b) V={_0 [H’(o)]2: tlO1+t202=O on 00}

corresponding to soft and hard boundary conditions, respectively. We let ff( stand for
the space of momentum and curvature tensors:

{ { m_ mo) i.s=, m0 L(w ), m12 m21},

and supply Y{ with the natural inner product
2

(W, )c E (mo, ko).
i,j

Fuhermore, we introduce the linear mapping T" Y[ Y{ as defined by

)0 tr ()30 +(1 )k0, YL

The inverse of T is given by

1
k0 tr ()30,(3.6) (T-)-

1- v l+v

and obviously T and T- are self-adjoint.
Finally we introduce the bilinear forms

(,0;,=((0,(+ (0-,-gl, ,ze(l, 0,e v,

where (0) (eo(0))i= and are as in (2.6).
In the notation above, the Reissner-Mindlin formulation of the plate-bending

problem, as stated according to the energy principle, is to find the pair (w, 0)e
H() x V that minimizes in H()x V the functional

(, 01 =d(, 0; , 0I-(X )

for a given fe H-().
The existence and uniqueness of (w, 0) is the consequence of the following

lemma, which is proved in Appendix B in slightly more general form (see Lemma B.2
of Appendix B).

LEMMA 3.3. ere is a positive constant c such that

((0) r(0+ll0-ll c(ll011o,= ,,+llwll,),
[H()], w H().

Remark 3.1. Regarding the validity of Lemma 3.3 uniformly over a sequence of
domains, see Appendix B. (Such a result is needed in 5 below.)

The analogy of the variational formulation (3.4) is stated for the Reissner-Mindlin
model as follows. Find (w, #, , )H()x Vx ff/x [L()] such that

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(_m, T-l_k)c (_8 (_0), _k)c 0, _kff{,

(h2/K)(3,, r)-(_0-w, ’) 0, sr [L2(to)]2,
(_m,_())+ (r, )=o, v,
-(% V_ z) (f, z), z H(-).
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558 I. BABUKA AND J. PITK,RANTA

The (unique; see Appendix A) solution to this problem is (WR, O_R, -mR, YR), where
_mR T_e (_0R) and YR --(K/hE)(_0R--V_WR) have the physical meaning of momentum and
(vertical) shear stress field, respectively, both being scaled by a factor D-1.

Finally we note that the pair (_mR,)’R) can be obtained alternatively as the solution
to the following minimization problem (the complementary energy principle). Find
(_mR, YR) Y( X LE(tO) ]2 that minimizes in Y( x LE(tO) ]2 the functional

(w, v)=1/2(w, v; _m, v)
under the constraints (3.7c, d).

Upon combining the two energy principles we obtain, in analogy with Lemma
3.2, the following lemma.

LEMMA 3.4. For any (w, 0) H(tO) x Vandfor any (_m, ),) Y{x [L2(to)]2 satisfy-
ing (3.7c, d) the following identity holds:

1/2 w, w, 0, 0 w, w, o_ , o_ + 1/2 N, w, m_ "r, / w, m_
,(w, O_)+ ,(m_, ).

3.3. The Kirchhoff model. Upon introducing the space

W= (z H2(to): z=0 on 0to},

we formulate the plate-bending problem according to the Kirchhoff model as follows.
Given fe W’ (=dual space of W), find WK W that minimizes in W the energy
functional

,(w) 1/2(_(v_ w), (v_w))-(f, w>,
where T and (.,.) are the same as in the Reissner-Mindlin model. The existence
and uniqueness of wx in the consequence of the coercivity inequality

(_, (v_ w), (v_w)) > cllwll 2,to, We W
which itself is an easy consequence of Lemma 3.3. Note that w: is uniquely defined,
in particular, iff H-l(to), and note also that the pair (w/(, _0/(), where _0/( =V_w/(,
minimizes the Reissner functional R over the subspace Z c H(to)x V defined by

z={(w, o_) wx v. o=v_w}.

For the Kirchhott model, the analogy of the mixed variational formulation (3.7)
is the following. Givenf W’, find (w, _0, _m, y) W V x Y/" x V’ (where V’ is the dual
space of V) such that

(3.8a) (_m, T-_k)x-(_e(_O),_k)x=O,
(3.8b) (_0 V_ w, sr) 0, " e V’,
(3.8c) (_m, _e()):+(y, q) O, q e V,

(3.8d) -( y, V_ z) (f, z), z e W.

LEMMA 3.5. The variational problem (3.8) is well posed and the unique solution is
(w, _0, _m, y)= (w/(, 0_/(, _m/(, y/(), where 0_/( V_w/(, _m/( Te_(O_/(), and y/( is defined by
(3.8c), i.e.,

(3.9) Yr o -(_mr, _e o x, o V.

Proof. If (w, _0, _m, 7)= (WK, 0_/(, _m/(, Yr), (3.8a-c) hold trivially. Moreover, since
w/( minimizes /( in W, we have (_m/(,e_(V_z))or=(e_(V_w/(), T_e(V_z))c=(f, z) for all
z W; so, by (3.9), (3.8d) holds as well. The well-posedness is proved in Appendix
A.
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 559

Remark 3.2. Note that although wr, _0r, and _mr obviously do not depend on the
way the space V is defined in (3.5), yr certainly does (see below). Hence in this
(somewhat weak) sense the "soft" and "hard" formulations are still separate even in
the Kirchhoff model.

We need below the following specific result related to the case where to is a convex
polygon.

LEMMA 3.6. Let wr be defined as above assuming that to is a convex polygon and
that f H-l(to). Furthermore, let p H(to) and d/ H(to) be such that

(3.10a) (V_p, V_ :)= (, :), : H(to),

(3.10b) (V_, V_ :) (f, :), : H(to).
Then p wr and =-Awr.

Proof. From (3.10a, b) it is obvious that =-Ap /-/(to), so it suffices to show
that/9- wr. First, since H(to) and since to is a convex polygon, it follows from
(3.10a) that p HE(to) and p H3(o3), t 03-UA,, A, being the vertices of to; i.e.,
p W (cf. [13]). Moreover, since/9 Ap =0 almost everywhere on 0to and since
consists of straight-line segments only, it follows that 02p/otE--oEp/on2=O almost
everywhere on 0to. Therefore, and noting also that Oz/Ot- 0 almost everywhere on
if z W, integrating by pas shows that

Hence, by (3.10b), ((70), (V))={ }, for all e W, so 0 minimizes in W
and accordingly, 0 w.

We can now prove the following result that will be needed in the next subsection.
LEMMA 3.7. Let be eicher a convex polygon or a smooth domain, and

(w, 0, , )=(w, 0,, )e Wx VxYgx V’ be the solution to (3.8) for a given

fe H-(), and with V defined by (3.5b). en =-7(w)e [L()] and
(w, O, ,) is a solution to (3.7) with h =0 in (3.7b). Moreover, if is a convex
polygon, then 7 o, IIf -1., where

<X z>llfll_,,.= sup ,
a. f a mooth oma., he. llzllo,. Cllfll-,,., where C aeee.a o. .

Prooy If r e [L()]= andf H-’(), it follows from a simple closure argument
that (3.8) remains valid if W is replaced by V and if <.,. on the leR side is replaced
by (.,.). To prove that T =-[(Aw), we integrate by pas in (3.9) to obtain

L L[<, >=- (aw) ax, ax=+ .aw +(- .)

0 02WK

Here the first boundary integral vanishes because yaw+(1- p)(oEw/on2) =0 on 0 is
the natural boundary condition associated to the problem of minimizing , and the
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560 i. BABUKA AND J. PITKRANTA

second boundary integral vanishes since ’! 0, V, assuming that V is defined
by (3.5b). Hence ’r -V_(Awr). On the other hand, from (3.10) we have Yr [L2(to)]2,
and from the well-posedness of (3.8) we see that indeed yr =-V_(Awr).

Having verified that 3’r =-V_(AWr), we conclude from Lemma 3.6 that 7r =V_,
where , H(to) satisfies (3.10b), so I1,11o,--Ilfll-, as asserted. Finally, if to is a
smooth domain, a standard elliptic regularity estimate implies that _Yr o, --< c w , -<-
cllfll-,.

Remark 3.3. It is essential for our results in the next section that when to is a
convex polygon, [13’r IIo, is bounded by Ilfll-, independently of to, in contrast to the
smooth domain, where the constant depends on to.

3.4. Energy estimates in case of hard support. Let us define the energy norms

[llw, _o, =m, yl[l- (w, _o; w, _o)/ (=m, ; =m,
(w,_0, _m, 3,) e H(to) x Vx?ICx[L2(to)]2,

where the bilinear forms are as defined in 3.1 and 3.2. Then by Lemma 3.2 we have
the identity

(3.11) IIl_uo-_U, o- 111= -Ill_u, l[I=- 2Q(_u)

whenever _u U and _tr satisfies the constraint (3.4b). Similarly, by Lemma 3.4,

(3.12) [llw w, _0 -_0, __m __m, _r _rlll -IIIw, _0, __m, _rlll 2<f, w>,
where (w, _0) H(to) x V and (_m, ,) 5’{x [L2(to)]2 satisfies constraints (3.7c, d).

Let us first apply (3.12) to estimate the gap between the Reissner "quadruple"
(WR, O_R, m_R, YR) and the Kirchhoff "quadruple" (Wr, _0r, _mr, Yr)- By Lemma 3.7, the
choice (w, _0, _m, y)= (Wr, _0r, _mr, ’r) is legitimate in (3.12) under the assumptions
that to is either a convex polygon or a smooth domain; f H-l(to); and V is defined
by (3.5b), i.e., the case of hard support. Upon simplifying the right side of (3.12), in
this case we obtain the identity

IIIw w,, 0 0,, :m :m,, y y,lll (h2/)II y, =
which together with Lemma 3.7 leads to the following theorem.

THEOREM 3.1. Let to be either (a) a convex polygon or (b) a smooth domain, let
f H-l(to), and let (WR, O_R, _mR, 3’R) and (Wr, O_r, _mr, )’r) be the solution to (3.7) and
(3.8), respectively, where V is defined by (3.5b). Then in case (a) we have the identity

IIIw w,, 0 0,, _m _m,, r r,lll (h=/)llfll =
--1,o,

where Ilfll-, is defined as in Lemma 3.7, and in case (b) the estimate

IIIw-w, 0-0, _m-_m,, r-r,lllN- c(h2/)llfll --1,to

where C depends on to.

Remark 3.4. It is easy to verify that

IIIw w,, _0 _0,, _m _m,, r r, II1 -> Er ER,

where En and Er stand for the total energy of the plate in the Kirchhoff and
Reissner-Mindlin models, respectively, i.e.,

El,: :R Wr, O_r -1/2(f, Wr ), ER R WR, O_R) --1/2(f, WR).
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 561

In particular, if to is a convex polygon, Theorem 3.1 and Lemma 3.6 lead to the relative
estimate

(EI, .,,)1,<. <- C(,o, f, v)h:/r,o,
where Ko is the shear correction factor, and

1 o> A wrfdXl dx2C(to, f, u)= -6(1- ,- ,o wrffdXl aXE
For example, if to is the unit square and f(x)-- 1, then C(to, f, l,) 3.440428/(1- ,).

Remark 3.5. In case of soft boundary conditions, constraint (3.7c) is more restric-
tive and rules out the choice (_m, y)=(_mr, Yr) in (3.12). It is still possible to find
_r, 3r) YE x [LE(to)]2, which is close to (r, Yr away from the boundary and

satisfies all the required constraints [16]. With such a construction, it is possible to
show that if both f and to are sufficiently smooth, then

IIIw. w,,, _0 _0,,, _m ,,, v :7,, II1 <- c(,o, f)h.

For other estimates of this type see also [11], the references therein, and [20].
Next, we apply (3.11) to bound the difference between the three-dimensional

solution and the Kirchhoff solution. To this end, we need to construct a three-
dimensional extension (_ur, _-or) Ux Y( of the Kirchhott solution (Wr, _0K, _mr, yr).
Following 16] we define _Ur 6 U as

(3.13)

and _or as

-K (--X3OK,1, --X30K,2, WK +1/2X ),

trK, ij --OtX3mK,ij i, j 1, 2,

(3.14) trr.,3 a(1/2x-h2)yr.,, i= 1, 2,

,,,,. < (-x3 +h%)f,
where a 12/h and H(to) is so far unspecified. It is easy to check that _oK satisfies
(3.4b) as far as U is defined by (3.1b), so (3.11) applies with the choice (_u, _o) (_ur, _oK

in this case. After a short computation, the right side of (3.11) can then be expressed
as

II1,, -o,, Ill- 20(_ur
(1- ,)2 ’ Awr dXl dx21-2u q+]- u

+3(1- vi) hE
160

1
+h2

17 h4 IfE dxl dX
l hE f+1680(1- v2) - @fdXl dx2.

Now if to is a convex polygon, the choice q=(,/(1-u))Awr is legitimate and
leads--recall also that ]]yrl[ 2

o,o., =-- AwKfdx1 dx2--]]fil 2
--1,to (see Lemmas 3.6 and

3.7)to the identity

Ill_u,,, " !11 2 Q(-u")
32 + 8 u + 3 u2
160(1- v)

h2 IIf - ,.<o + 1680(171 ,2 h4 I,,, f2 dxl dx2.
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562 i. BABUKA AND J. PITK,RANTA

On the other hand, if to is a smooth domain, we can still find for any 6 > 0 a q, H(to)
so that

t;

AWK dx, dx2 < C3V21I/kWK 2(3.15a) q 1--- 1,,

(3 lSb) I,o Ivq’l= dx dx <

Since Ilawlll,f()llfll-,, we obtain in this case, choosing 6=(i-2v h, the
estimate

t,2h 2 17h4
2
0,60[[[_uu‘, =o’u‘[[I2 2Q(_uu‘) C(to) 11/112_1,,o+1680(1 u2 Ilfl[

We thus conclude the following theorem.
THEOREM 3.2. Assume that to is either (a) a convexpolygon or (b) a smooth domain.

Letf Lz(to) let (U_o, go) U x Y( be the solution to (3.4) with U defined by (3.1b), and
let (u_u., flu‘) be defined by (3.13)-(3.14), where (wu‘, O_u‘, re_u‘, yu‘) Wx VxYdx V’ is
the solution to (3.8) with V defined by (3.5b), and either q,= (u/(1- u))Awu‘ (case (a))
orq, satisfies (3.15a, b) with 6 /1-2u h (case (b)). Then in case (a) we have the identity

IIl_uo-_,,_o-_,lll= Cl(u)h=llfll-i / C_(u)h4llfll
and in case (b) the estimate

IIl_uo _u,,, _o _,, III- < c(to)[c3(u)h/hZ]llfll-l,o, / C2(/2) h4 Ilfll =
0,o,

where Ilfll-. is aefinea as in Lemma 3.7 and

Cl(z,)
32+8u+3u 17

C3(u)
z’

60( )
c_()=

680( ’)’ ,/1-Remark 3.6. In the case of soft boundary conditions it is possible to show that,
if to is smooth and f is sufficiently smooth, then

III _Uo _u,,, _o _,, III2 =< c ,o, f)[ 1 + C3 ’ h,

where _du‘ is close to _o-u‘ away from the boundary strip 0to x (-hi2, hi2) [11], [16].

4. The llate paradox. Let too c R2 be the unit circular domain with the center at
the origin, i.e.,

to[0]__ {(X1 X2): rZ= Xl
z +x < 1}.

Furthermore, let to t"l, n 1, 2,. ., be the sequence of regular .(n + 3)-polygons such
that

/[n] Z to[n+l] C t[n+l] CS to[0]

in the sense that for any x toto] there is n(x)> 0 such that x tot-3 for all n > n(x).
Finally, let l’t"l to,t"l x (-hi2, hi2) and ft1 totl x (-hi2, hi2).

Assume now that the unit load is imposed, i.e., f=p/D= 1 (see 2). Then for
nxe thickness h there exist the unique solutions _Uto"3, (wt"1, _0t-l), and w, n
0, 1, 2,. ., corresponding, respectively, to the three-dimensional, Reissner-Mindlin,
and .Kirchhoff formulations of the plate-bending problem with either hard or soft
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 563

simple support. In 4.1 we will show that w w] # w and give explicit expressions
for wt] and w]. This is the plate paradox in the Kirchhoff model pointed out in [7]
and [3]. In 4.2 we will show that this paradox also occurs in the Reissner-Mindlin
model and in the three-dimensional formulation in case of hard simple support. Finally,
in 4.3 we show that the paradox does not occur in the Reissner-Mindlin and three-
dimensional formulations where soft simple support is imposed. This has been briefly
noted in [3].

The results clearly show that seemingly minor changes in the boundary conditions
can lead to a significant change of the solution on 12 t"], respectively, to In], when n is
large. In fact, we will see that there can be significant changes already when n 1.

The main question we will address below in this section is whether, as n ,
_ut"]_ut] for the three-dimensional formulation,

(w["], _0["]) --> (w], _0]) for the Reissner-Mindlin model,

wig"I--> w[] for the Kirchhoff model.

4.1. The plate paradox for the Kirchhotf model. We have shown in Lemma 3.6 that
for n 1, 2,. , Wtk"]= pt,], and --AWk"]= qt-], where ptn] and pt-] satisfy (3.10a, b).

THEOREM 4.1. Let p[], []e H(w[]) be such that

(4.1a) (V_p[], V_:)= (q[o], :), sc H(w[o]),

(4.1b) (V_q[], V_ so) <f :>, sc H(to[])

with f 1. Then as n -
Here we understand that q["] and q["] extend by zero from to

["] to w [].
Proof Let P, denote the orthogonal projection of H(wt]) onto the subspace

H’n(w[]) defined by

Hl’n(to[]) {U e Ho(Wt3) u 0 on wt]- to t"]}

and let qt" and fitn] denote the extension of qtn] and pt-], respectively, by zero onto
wt. Then q["] P,qr by (4.1b). From Theorem C.1 in Appendix C, it then follows
immediately that t, __> q[] in H(w[]). From (4.1a) we then see that pt"]- p,pt] ._> 0
in H(w[]), and therefore, by the same argument, that t3["] p[] in Ho(W[]). [3

Let us now characterize t3t]= w and pill= w] more explicitly. To this end,
note first that p[O] is the solution to the problem

(4.2a) AAp[]= 1 on w[],

(4.2b) p[] Ap[] 0 on aw[].

On the other hand, it is easy to see that p[O] is the solution of the problem

(4.3a) AAp[]= 1 on w[],

(4.3b) p[O] 0 on Ow [],

(4.3c) ,Ap[] + (1 u)
o2pt]

O.On2
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564 I. BABUKA AND J. PITKRANTA

Here (4.3c) is the standard boundary condition for the simply supported circular plate
(see, e.g., [24, p. 554]). Solutions (4.2) and (4.3) show that

[oo].2 C[3Oo] p[o] 0] C[20]r2 ..{_ C [30]r4,p[o]=CO]+C2 + r4, =C

where r2 x+ x,
1

64’
and C1, C2 are determined from the boundary conditions. By simple computation we
get

1 5+u
(4.4a) pt(0, 0)= wJ(0, 0)-

64 l+u’

3
(4.4b) pt(O, O)= w(O, O)

64

and hence for v 0.3 we have

o)
1.36,

0)

i.e., the gap between w and w is 36 percent at the origin. Analogously, for v 0.3,

0.287.

Remark 4.1. We have assumed that wt" were regular polygons. As the proof
shows, (4.5b) also holds when {wt"l} is an arbitrary sequence of convex polygons such
that wr"l--> wro in the sense described above.

It is essential, however, that wt" are convex polygons. If we replace wr" by
where a3 t"l are nonconvex polygons as shown in Fig. 4.1, then [15] shows that

)3/4

FIG. 4.1. A nonconvex polygon oo ’q.
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 565

satisfies

and hence

AZa3t]= 1 in toto]

[] O[]

0 in Oto [],
On

(4.4c) a3 t](0, 0)
1

64

4.2. The plate paradox for the three-dimensional and Reissner-Mindlin models. We
will analyze in detail the case of Reissner-Mindlin model only. The case of the
three-dimensional formulation can be dealt with analogously.

TIqEOREM 4.2. Let h be fixed and sufficiently small, and let WtR"] be the Reissner-
Mindlin solution on to

t"] corresponding to unit loadf 1 on tot"] and hard simple support
on ato t"], n O, 1, 2,.... Then if WtR] is extended by zero onto toto], we have

wt"-,oll,,o-> >0,

dx, dx > 0(w"-W])
[o]

for all n no, no large enough.
Proo By Theorem 3.1 we have

IIIw" w #" #,m"] W],r"] rlll<hlllfll--1,win]
iiiwa_ wa, Oa_ 0a, a_a, 7a_ 7alll Ch/ iif ,,o.

Note that Ilfll-l,t- Co independently of n. Using Lemma 3.3 and Theorem B.3, we
see that

[11w- wll,+ I1-11,’3 Ch=,
[llw- wllo+ II0-11 = o3< Ch=,1,w

where C is independent of n and h. On the other hand, we have by Theorem 4.1,

w- wll,o 0 as n ,
This shows that for sumciently small h there is a > 0 such that w- wll 1, > o
for all n > no.

Realizing that (in our case for f= 1)

-r
-rE=

we also have

(o- WtR) dx, dx2 >= a > 0 as n > no.

Using Theorem 3.2 and analogous arguments, we get Theorem 4.3.
THEOR;EM 4.3. Let h be fixed and suciently small and let "]= (U01

be the three-dimensional solution of the plate.bending problem on Ot, corresponding to

D
ow

nl
oa

de
d 

12
/0

4/
25

 to
 1

28
.6

2.
20

8.
15

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



566 I. BABUKA AND J. PITKRANTA

the load p D and hard simple support, n O, 1, 2,. . Then if Uo’ is extended by zero
onto 1) t], we have

[o]I1’.’o- ,.,o ,.o_ , > o,

I ((1, 1,) +. o( ))"03 Xl, X2, dx dx2 a > 0
[o]

for all n no, no sufficiently large.
Theorems 4.2 and 4.3 show that hard simple suppo leads not only to the paradox

in the rchhoff model but also to those in the three-dimensional formulation and the
Reissner-Mindlin model. (In 4.3 we will show that the paradox occurs neither in the
three-dimensional formulation nor in the Reissner-Mindlin model when the simple
soft suppo is imposed.)

The proof employs the fact that the Kirchhoff model approximates very well the
Reissner-Mindlin and three-dimensional formulations for the hard suppo. This shows
that the circular plate and polygonal plate solutions are far apa in the entire region
and not only in the area close to the boundary, where boundary layer effects occur.

The results above show that plausibly unimpoant changes in the boundary
conditions could lead to significant changes in the solution through the entire region
even if the three-dimensional linear elasticity model is used. We expect that the paradox
will also occur in nonlinear formulations. For engineering implications of effects of
this type we refer to [6].

4.3. The "nonparadox" in case of soft simple support. In this section we will prove
that, in contrast to hard simple suppo, the solution on w" converges to the solution
on wo for both the Reissner-Mindlin and the three-dimensional plate model. This is
in obvious contrast to hard simple suppo. We will elaborate in detail on the case of
the Reissner-Mindlin model. The analysis of the three-dimensional model is analogous.

Let us denote

SO,, w[’+1- w["] n 1, 2,

o
o, wtol_ w’, n 1, 2,.

(see Fig. 4.2).
Let L (Lz(w)3, _u (w, _0) L and

So {_u L: w H(ot), _0 (H(wt:l))2},
5e,, {u L: w n(wt]), w =0 on o., _0 (n’(wt])2)},
if,, {u e L: w e H(ot), _0 e (Hl(wt"l))2, _0 e (H’(,,))2, m n, n + 1,.. },..., {u e L: w e H(ot), w 0 on o.,

_0 6 (HI(o[]))2, _0 (HI(j))2, j m, rn+ 1,...}.

We have Se,, c Seo, Seo c ,,, and

All the spaces are embedded in ff. Furthermore, let

z. {u e L: w e H(ot"), _0 e (Hl(,ot")=},
2. {,, e Z." w e H(,ot")},

s,(w, _0; z, )= E s,(_u, _v),
i=0
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 567

colo

FIG. 4.2. The configuration of the domains ., 90, .
where M, is given in 3.2 for the region to and MR’ has the same form but is integrated
only over . Analogously we define s, etc. Finally, we supply 1 with the norm

II_ull == X ,(_u,_u).
i=O

To see that I1" is indeed a norm, assume that _u (w, _0) E ffl and [I-u o. Then, since
the first term in the expression for M# is the same as in the case of plane elasticity
(where 01, 02 play the role of the displacements), we have on s, 01 =as+csx2,
02 bs-csxl, and because II_0-Wllo,- 0 we get cs =0. Hence w ds + asxl + bsx2 on
fis, and so, because w E H(tot]) we get w 0 and a bs 0, j 0, 1, 2,. (see also
Appendix B). Hence _u 0 and accordingly, I1" is a norm on ;3-1.

For u E Z, let u 2
R,,o-= Mt"J(_U, _U). Then by Theorem B.1 in Appendix B,

(4.5a) inf
abe

(4.5b) inf w d + ax, + bx2 + CX X2)II, - c u ,-.
abcd

Here C, depends in general on tot-].
Assume now that for an no > 0

(4.6a) f has compact support in tot-o],

(4.6b) I,ot.ofdxl dx2 fx dx dx2= Iot.ofX2 dx dx2= Iot.ofX’ x2 dx dx2=O

and that n > no, m > no. Then for _u E ft,, n => no,

EO]
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568 I. BABUKA AND J. PITK,RANTA

Hence for n, m _-> no there exist unique

such that

t0n(_U(n), _V) | fz dxl dx: Vv
_

(z, q)
[o]

and analogously for u(9-), U(.,m), U(.). Obviously _u(Seo)= _ut and _u(,)=
and _u(W,.,)= _u(.) on w[] and is zero on

Using Theorem C.1 we get

(4.7a) _ut]= _u (9o)= _u(Se.) + p (5eo,

(4.7b) _u (6e0) [12 11_/./(o,gn)1[2-[ p(o,90, o,09n) 2,
(4.7c) Ile(o,.)ll-,o as noo;

(4.8a) _u(ff,) _u(5o) + p(ff,, 5o),

(4.8b) ll-u(-n)ll-- II-(o)II=/ II_P(-., o)II =,
(4.8c) lie(., :eo)ll-, o as n -(4.9a) _u (..m) _u (Sf.)+ _P (..m,
(4.9b) [[_u(.,m)[[2= [[_U(ofn)[]2-[ [[_p(ogn, o,09n) 2,
(4.9c) Ile(eo,, en)ll-0 as

(4.10a) _u (3-,.) _u (w...,) + p (3-m, ...),
(4.10b) II_u(3-.,) := II_u(f..m)ll2+ lip(f-.,, ...,) 2,
(4.10c) 118(3-m, ..m)[I-* 0 as n-

Now let e > 0 and n > max (n(e), no). Then we have

ll_p(Seo, se.) < , ll_p(-., o)II < .
Using (4.7)-(4.10) we get

II_(o) = / II_p(-m, o)II = -ll-(-m) 2 II_ (.,,.) = / IIe(-,., .,,.)
-ll_(se.)ll/ ll_p(..,., .)II/ ll_p(o, .-.)II
--II_(o) =- ll_p(o, se)ll=/ ll_p(...,, )II =
/ ll_p(-,., ,.,)

and hence for n, m ->max (n(e), no)

ll_p(,, Seo)II =/ ll_p(o, 6en)ll--ll_p(.,,., .)II=/ ll_P(-m, ,,,m) 2e,
which yields

Therefore

_u (eo) _u (.,.)= _u (eo) _u (e) + _u(e)- _u(..)= (eo, e.) p (e.,.,
and hence

11_.(9o)-_.(.,.) ’/+,/__< c,/.

Because, as above, _u(W...) _u"] on w ["], and zero on 9., _u"- _u in the space
or in any 3-m for m fixed.
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 569

Remark 4.2. Note that until now we have not used Theorem B.3 (Appendix B),
but only Theorem B.1.

So far we have assumed that f satisfies (4.6). Let us now study the general case.
Assume that f L2(wtl).

Let us first note that if _u (w, 0) n,n, then w H(o)l) and

(4.11) Ilwll 1,---Ilwll 1,- CIl_ull
with C independent of n because of Theorem B.3.

For 0 < A < 1/2 we denote

Then

Now let

Ri= {(Xl, X2): xl-f-x> l-A},

01 {(x, x). x, +x

Wllo, cll wll,,o cllull,
wllo,o CA1/2llwll,,o CA1/ZlluII.

fa
f{f on Ra,
0 on w[l-Ra,

ga =(a + bx -f- CX2 "-t" dxl /2)A,

where a is the Dirac function concentrated on ORa and a, b, c, d are such that fa +
satisfies (4.6).

For n > nl,a such that/-a c wr"l.J, let _ua(...) and _ua(SPo) be the solutions when
instead of f the function fa is used. Then we get

II_(e.,.)-
_
(e.,.)II =< ca’/,

II_(:eo)-
_
(eo)II--< ca’/,

where C is independent of n and A but, in general, depends on f Hence we can select
A so that CA/2< e. Furthermore, we have shown

I1_(,)-_(Oo) <

for all n _-> na (e) and therefore

[[_u(.,.) _u(Oo) < 3

for all n >= nl(e). Since _u(Seo) _u and _u(Sf,,,) _u", we get

II_tg-_tll- 0 as

Here _ut"l (wt", _0t") is understood to be extended by zero on 9, and II" is the
norm in -1 (note that wt"eHo(OOt), but O_t"C_Ha(oo) although 0t"lc H(wt")).
Because the functions in H(ot) with compact support are dense in H(w), there
is #t"eHo(wt") such that [Iwt-wt"ll-<_e for all n>=n(e). Hence with
(#t-l, _0t-) we get

II_at-_uall- 0 as n-

Hence, using Theorem B.2 (Appendix B), we have

Ilw%- w[[,(o)/ II_0t-_0ll,,(o)-,0 as n

In summary, we have proved Theorem 4.4 below.
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570 1. BABU;KA AND J. PITKRANTA

THEOREM 4.4. Let fL2(to[1) and let UtRn?=(WRnl, O_tR"), respectively, UtOR=
(Wt, O_tl), be the Reissner-Mindlin solution on to, respectively, oo, for soft simple
support and fixed h. Then

+ IIO 0 as n -We see that in contrast to the hard support there is no plate paradox when the
soft support is imposed. Hence soft simple support is physically more natural than
hard simple support.

[o]Remark 4.3. In Theorem 4.2 we assumed that fe Lz(tO []) while the solutions _u
and _u" were defined for anyfe H-l(w?), respectively,fe H-(ooc"7). Iff has compact
support, then Theorem 4.4 also holds forf H-(wc). We can weaken the assumptions
on f in Theorem 4.4, e.g., so that fe H(w7), a > -1/2, but the proof will not hold for
f6 H-l(to[]).

Remark 4.4. We have assumed that to is the sequence of regular polygons. This
assumption was used only when we were using Theorem B.3. Hence Theorem 4.4 holds
for any regular family of domains (see Appendix B). If f satisfies (4.6), then there is
no need for regularity (see Remark 4.2) of the family of domains under consideration
and Theorem 4.4 holds in the full generality.

Remark 4.5. We have assumed in Theorem 4.5 that h > 0 is fixed (i.e., independent
of n). We could also consider a two-parameter family of problems where both n and
h vary. Then, for n fixed and h 0, _UR1-- _U (and hence for h 0 the difference
between soft and hard support disappears). Hence, combining the results of this section
with 4.2, we see that

(n)lim lim _U(R lim lim _u R
n-oo h-0 h-0 n-oo

In a way analogous to the proof of Theorem 4.4, we can prove Theorem 4.5.
THEOREM 4.5. Let h be fixed and u_, respectively u_], be the solution of the

three-dimensional plate problem on 1) [], respectively, , with soft simple support.
Assume that the load p L2(w). Then

0

aS.
Remark 4.6. Remarks 4.3-4.5 are also valid for the three-dimensional plate model.

4.4. Some aitional considerations. As we have seen, the Kirchhoff model (bi-
harmonic equation) leads to paradoxical behavior for hard simple suppo. The same
mathematical formulation also describes other problems and hence leads to the
same paradoxical behavior.

As an example, we mention the problem of a reinforced tube shown in Fig. 4.3a, b.
The reinforcement is attached by an unextendable tape to the exterior surface. Here
we have the paradox that the stress caused by hydrostatic pressure is different for the
polygonal and circular outer surfaces.

Analogous examples can very likely be found in fields other than elasticity where
the problem reduces to the biharmonic (or polyharmonic) equation.

We have shown the paradoxical behavior for n m and h relatively large compared
with 1/n (see Remark 4.5). Hence the question arises of how large will be the difference
between hard and soft suppo in three-dimensi0nal formulation for n fixed and h 0.
To this end we consider a square plate with sidelength equal to 1. In Table 4.1 we
give the values of

INOFTI n(h), IEnARD (h).
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 571

(a) (b)

FIG. 4.3. Reinforced polygonal and circular tubes.

TABLE 4.1

Percent h 0.1 h 0.01

34.68 11.69
20.21 2.03

Here by Esovr and EHARD we denote the (three-dimensional) plate energy for soft and
hard support, and by EK, the plate energy of the Kirchhoit model for the Poisson ratio
u 0 (see also [7]).

Appendix A. Well-posedness of variational problems (3.4), (3.7), and (3.8). We use
the following basic theorem (see [18]).

THEOREM A.1. Let H be a Hilbert space and be a bilinear form on H H that
satisfies

(AO) (u, v)= (v, u), u, v H,

(A1) I(u. v)l <- Cllull.llvll.. u. H.
(A2) sup (u, v)_-> cllull. Vu . H,

IIvlIu--1

where C and c are positive constants. Then if F is any bounded linear functional on H,
there is a unique u H satisfying

(A3) (u, v)= F(v), v H.

In applying Theorem A.1 to problems (3.4), (3.7), and (3.8), we choose the
following notation.

(a) The three-dimensional model (3.4)"

H=Ux,

F(_v, Z) -Q(_v).
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572 I. BABUKA AND J. PITK,RANTA

(b) The Reissner-Mindlin model (3.7)"
H= H() x Vx {x [L2()]=,

H= Wx VxY{x V’,
(w, _0, _m, y; z, , _k, )

(m_, T-lk_)c -(__e(_0), _k):c-(_e(qg), m_)yc-(O_-Tw )-(q9-Tz, T),

F(z, o, k_, )=-<f z>.
Then in each case, is symmetric, F is a bounded linear functional on H, and

the variational problem takes the general form (A3). Thus it suffices to show that (A1)
and (A2) hold.

THEOREM A.2. Assume that to is a bounded Lipschitz domain and that theparameters
u, h, and K satisfy

where h > 0 and g > 0 are given. Then in each of the three cases above there are constants
C C(h, g) and c c(to, h, g) such that (A1) and (A2) hold.

Proof In view of (3.2) and (3.6) the mappings S-1" Y(--> Y{ and T-1" Y{--> Y{ are
uniformly bounded in the assumed range of u. It then follows easily that the assertion
concerning (A1) holds, so let us concentrate on showing that (A2) is true.

(a) The three-dimensional model. Let (_u, if) U x Y{ be given and let

(=O’o)ij tr (=o’)30, i, j 1, 2, 3.
2Then II__crlle Ilff-__crolle+lltr (ff)llo,a and it follows from (3.2) that

(A4)

D
(_or, S-’ _er) {(1 + )11 o11%+(1 2) oll}

h
--I1- o11 (o < <

12

We use the following lemma, which is related to the well-posedness of the Stokes
problem. For the proof see [12].

LEMMA A.1. There exists V_o U and a constant C depending on to and h such that
the following inequalities hold"

II_voll 1,D, Glltr (_o) o,.,

(div _Vo, tr ()) > Iltr ()ll 2

With _Vo as in Lemma A.1 we now set (_v, z)= (-_u- 3_Vo, -32_e(_u)), where 8 is
a constant to be specified shortly. Then by (A4), the inequality (r,ra)<_-
(s/2)llr, lla+(1/2s)llrall (s> 0), and Lemma 3.1, we have that

(_U, _0"; _V, Z) (_0", s-l_o’)y( --1/2 6(tr (_o’), div _Vo)

+ (:-:o, (_Vo) + ll(_ull- (ff, s-l(_u)
-->(lfi3-c2a-c3a2)llcr-ffoll/(a-C4ae)lltr()ll2:o,. -[- C 12 _. 11,2
->min {_:/3 C2a- C3a2, 1/2a 3C4a2, c16=}(11 u2_1,. + I1__o11).
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 573

Thus, choosing to be a sufficiently small positive number, we have found (_v, _z)
such that II_v, zll, --< CIl_u, 11, and (_u, _o-; _v, z)->- ell_u, 11,, where C and-c depend
only on to and h. Hence (A2) is true in case (a) with c depending on to and h.

(b) The Reissner-Mindlin model. Given (w, _0, _m, 7) H(to) x V x 7" x [L2(to)]2,
let (z,o,k_,)=(-w,-O_,m_-e_(O_),7-(O_-V__w)), where 8 is a constant to be
specified. Then noting that by (3.6), _m, T-1 _m) -> _m /(1 / ), and recalling Lemma
3.3, we have

(w, _0, m,= _7; z, o, _k, ,)=(m,_ T-lm)x+(h---),,7_,]2=o.,o + t,, e (_0)]]c-(_m,_ T-le(O_))c=

o,- (_%_O-w

> ,-c [Imll/ 11(_0)11 ll0-Vwll =
0tol+v 2

0,to

{ h2( -)}=>min l+vl fig Cl(,--

Thus if B is small enough we have found (z, o, _k, ’) H such that ]]z, , =k, ]IH =<
CIIw. _0. =m. _ll, and (w, 0_, m=; z, o, k_, )>=cllw o_, m=, _3,11, where the constants depend
only on to, h, and ft. These prove the assertion in case (b).

(c) The Kirchhoff model. Given (w, _0, _m, y) H, let (z, o, _k, ’)= (-w, -_0-8Oo,
_m- B_e(_0), Y- ’o), where Oo V and sro V’ are defined so as to satisfy

I1_oll ,- It_rtl,, <% o>--Ilyll,,
oll ,- 0 vw 1, <0 v w, fro>

which obviously is possible. As in case (b), we then find that for a sufficiently small. IIz. . _. 11. <= CIIw. _0. _m. 11- and (w, _0, _m, y; z, q, _k, ’)>_- cllw. _o. _m. 11. where
C and c depend only on to, and so the assertion follows in case (c).

Appendix B. The Korn inequality. Let to be a bounded Lipschitz domain and
define the seminorm

{Io }1/2,(_o)1 = dx dx2 0 (81(o)))2,

where e(_0)=1/2(O0/Oxj +OOj/Ox), and let

lul = H,=lol<+llo-Vwll =o,, u=(w,_0), w (o), 0(/-/1
THEOREM B.1. There is a constant C depending only on to such that for any

_0 [H’(o)]

(B 1) inf {11 o a bx2 =, + 0=- c + bxlll 1,) < Cl_01 =
E(o),

abc

(B2) inf IIw-(a + bx + CX2 + dXl x2) HI(,) < CIU_ IR,
abcd

Proof. Inequality (B1) follows immediately from the Korn inequality for plane
elasticity (see [19]). Inequality (B2) follows from (B1).
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574 i. BABUKA AND J. PITK,RANTA

LEMMA B.1. There exists a constant C depending on to such that for any (w, 0_)
[Hi(to)]

Proof. We apply the standard contradiction argument. If the assertion is not true,
there is a sequence {w,, _0, such that

IIw,_0ll,-- 1,

2II_0.-w.llo,- 0, w.a-o
as n. Then by Theorem B.1, {_0,} contains a subsequence (which we denote
once more by {_0,}) such that O_,(a-bx2, c+bXl) in [Hl(to)]2. Furthermore, since
II0-Vwllo,-,0, there is another subsequence (once more denoted by {_0,, w,}) so

2that w, w in Hi(to). Hence b=0 and w=axl+cX2+d. Because w, dsO we get
a c d 0, contradicting the assumption w, _0 , 1.

We immediately get Theorem B.2.
THEOREM B.2. There exists a constant C depending only on to such that for any

_u (w, _0) H(to)x [nl(to)]2

(B3) Ilwll - <Clul
Let us now consider a family {to} of Lipschitz bounded domains. The family

will be called regular if there is a (uniform) constant C so that (B3) holds for all to .
Let us now consider a special family of domains. Let toto] be a unit circle and

tot-] be a sequence of regular n + 3-polygons such that

.[n] [n+l] C [n+l] [0]

[.] [0] as

in the sense that for any x [o there is n(x)> 0 such that x m["] for all n > n(x).
We let o {m[o], m[l, [2,... }.

THEOREM B.3. efamily o is a regularfamily of domains and hence there exists
C > 0 such that

IIwll .+01, 1," < C[g[,"
for any =(w,O)H([n])x[Hl(o["])], n=0,1,2,....

Proof For n > no the ["] are star-shaped domains and

am["= {(Xl, x)" Xl p,(O) cos 0, x2 p,(O) sin 0, 0 0 2},

where p,(0) o I and p(0) 0 uniformly. Let Q, be the one-to-one map of " onto
o[] defined by

Q,(p(o) cos 0, p(o) sin 0)= (p(O) cos 0, p(O) sin 0)

=( p(O)-(1/2)
p.(O)-(1/2)

( p(o)-(1/2)
p.(O)-(1/2)

COS 0

sinO foro(O)>-.
2
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THE PLATE PARADOX FOR HARD AND SOFT SIMPLE SUPPORT 575

If Qn(x1, x2)"- (1, 2) then we have , t"(x,, x2), :t2" 2(Xl, x2), Xl Xn](l, 2):
X2 Xn](l, 2), and"x,, (O/Oxj) o, x", (Ox,/O) 6ij i,j 1, 2 as n ,
uniformly with respect to (x,x2)wt" and (,)wto. Let y=(w,O) a
H(wt") x (H(w"))2 and let

a= (, 0), 0(1, 2)= (Xl(l, 2), X2(l, 2))"

Then O H(wt) x (H(wta)) and by Theorem B.2 we have

and also

1 1,o[] W 1,o[n](1 + o(1)),

_111,o[] I1_0 1,[n]( 1 + o( 1 )),

I-ill R.,otJ I-ul R.,ot"J + o(1)(11 wll ,o/ I1_0
as n . Hence

Ilwl[ =,,-J(1 + o(1))+ 0,o(1_ +o(1))
_
c[l_u ,o/ o(1)(11 w ,o/,Ilull

From this we see that for n > no the family is a regular one. Using Theorem B.2, we
then see that the whole family o is regular.

Appendix C. A lrojection theorem.
THEOREM C.1. Let H be a Hilbert space, let {H,} and {K,} be sequences of closed

subspaces ofH such that Hn c Hn+l and K,
_
K,+I, n 1, 2, , and let

Ho=UH, and Ko=fqK,.

Furthermore, let P. and Q,, respectively, Po, Qo, be orthogonal projections onto H, and
K,, respectively, Ho, Ko. Then for any u H

Pu Pou - 0, Qu Qou - 0

as 11---)o(3.

Proof First observe that Q/lU Q/Qu --< Q.u II, so Qu - q->- 0
monotonically. Furthermore,

IIQu Q/ju IIQulI2-2(Qu, Q/ju)/
so {Q.u} is a Cauchy sequence. So Q,u- v and v K, for all n. Hence v Ko and
since (v, w) lim,_ (Q,u, w) lim,_ (u, Q,w) (u, w) for all we Ko, it follows that
/3 Qolg.

Let us now consider the projection operator I- P, (,. Then (, projects H onto
H1, and Hlw H ( So P,u v Ho and by the,+1. Hence ,u u P,u u v f’) H,.
same argument as before, v Pou. I’l
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