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SPECIAL FINITE ELEMENT METHODS FOR A CLASS OF SECOND
ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS*

IVO BABUSKA', GABRIEL CALOZ!, AND JOHN E. OSBORNE

Abstract. In this paper the approximate solution of a class of second order elliptic equations
with rough coefficients is considered. Problems of the type considered arise in the analysis of unidi-
rectional composites, where the coefficients represent the properties of the material. Several methods
for this class of problems are presented, and it is shown that they have the same accuracy as usual
methods have for problems with smooth coefficients. The methods are referred to as special finite
element methods because they are of finite element type but employ special shape functions, chosen
to accurately model the unknown sclution.
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1. Introduction. In this paper we consider the approximate solution of a class of
second order, two-dimensional elliptic boundary value problems with rough or highly
oscillating coefficients. We apply an approach proposed by Babugka and Osborn [5]
for the approximate solution of problems with rough input data. This approach was
applied to one-dimensional problems in Babuska and Osborn [4]. Specifically, we
consider boundary value problems of the form

Dua,) = - (ale) o) - 5 (ale) gruten)) = fa) Ve € 9,

u(z,y) =0 V(z,y) € o,
(1.1)
where {2 is a bounded domain in R?, f is a function in L?({?), and where the function
a € L™(f) satisfies

(1.2) O<a<a(z,y) £fA<oo  ¥z,y e

where o and 3 are constants. Throughout most of the paper we also assume that
a{z,y) locally varies sharply in at most one direction, a requirement on the coeflicient
a that will be made precise later (see Remarks 2.1 and 4.1); such coefficients are also
called (curvilinear or straight line) unidirectional. If the coefficient a is rough, then
the solution » to (1.1) will also be rough; to be specific, # will not in general be in
HZ%(?) and may not be in H'*5(1) for any £ > 0.

Problems of this type arise in many applications; we are especially concerned with
applications to unidirectional composite materials (briefly, composites). In these ap-
plications the coefficient a(x,y) represents the properties of the material and changes
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abruptly. We are also interested in problems in which a{z,y) changes smoothly but
rapidly. We take the liberty of referring to both types of problems as composites. In
Figs. 1.1-1.3 we show some typical configurations for unidirectional composites. In
these figures the coefficient is constant or is changing slowly along the lines or curves
and is changing sharply in the transverse direction; the

F1G. 1.1. A straight line unidirectional composite.

Fic. 1.2. A tubular (curvilinear unidirectional) composite.

absence of lines in a portion of the material indicates a constant or a slowly varying
coefficient. We can interpret the lines as fibers in the composite. This interpretation
is, of course, symbolic for problems in which a(z,y) changes smoothly but rapidly.
Figure 1.1 shows a straight line unidirectional composite or coefficient, and Fig.
1.2 shows the cross-section of a tubular composite. Figs. 1.3a,b show reinforced panels.
The area A in Fig. 1.3b indicates a region in which a(z,y) is smoothly becoming a
constant or a smooth function. We refer to the materials or the coefficients in Figs.
1.2-1.3 as curvilinear unidirectional. We note that certain interface problems can be
naturally treated as problems of composites. With this approach it is not necessary
to fit the interface with the finite elements, as is done with the standard approach.
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(a) (b)

F1o. 1.3. Reinforced panel.

A finite element method is obtained by restricting the weak formulation of prob-
lem (1.1),

u € H}),
1.3
(13) B(u,v)E[a grad u- grad vd:cdy:ffvdxdy Yv € Ha(S),
4] Y]

to finite dimensional trial and test spaces. The outline of the approach given in [5] is
as follows:

(1) Characterize the space of solutions corresponding to the space of right-hand
sides (in our case we suppose f € L2(Q)). This will involve a regularity result. Al-
though regularity results are well known for elliptic problems with smooth coefficients,
they are not available in a direct form for our problem. Such results are discussed
in §2.

(2) Select trial spaces that have good approximation properties. The approxi-
mation properties of the trial functions or shape functions are directly tied to the
regularity of the solution. For example, if the solution u of (1.1} is not in H2(Q),
then it is well known that the usual finite element method based on piecewise linear
approximating functions produces inaccurate results. The problem of selecting opti-
mal trial functions is not simple; in practice, one would like to find a trial space that
performs almost as well as the optimal one but that can be reasonably implemented.
We use the phrase special finite element methods to denote methods with this type
of special shape functions.

(3) Select a test space so as to ensure the inf-sup (or stability) condition is satisfied
and so that the resulting finite element method can be reasonably implemented.

We use this approach to design methods of finite element type that will yield,
roughly speaking, the same accuracy as the usual finite element method when a is
smooth, but strikingly improved accuracy when a is rough.

The organization of the paper is as follows. In §2 we present the regularity results
needed for the problems we are dealing with. Then we propose and analyze several
methods to solve problem (1.1) in the special case in which @ = 5 = (0,1) x (0,1)
and a(z,y) = a(z) is a function of z only. This study is carried out in §3, where we
propose three distinct approximation methods. A function a(z,y) = a(z) of = only
is an example of a function that locally varies sharply in at most one direction; in
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fact, such an a(z, ) globally varies sharply in at most one direction. The coefficient
a(z,y) can also be referred to as straight line unidirectional (see Fig. 1.1}. In §4 we
present a further development of two of the methods from §3 to treat problems of the
type depicted in Figs. 1.2 and 1.3 with curvilinear unidirectional coefficients.

As noted above the approach presented in this paper is thoroughly studied in
the one-dimensional case in [4]. Techniques similar to special elements were used in
Ciarlet, Natterer, and Varga 8] and in Crouzeix and Thomas [9] to handle degenerate
one-dimensional elliptic problems. We also mention the recent work of Moussaoui and
Ziani [15], which deals with the same kind of problems with a method similar to our
Method I, presented in §3.1. Finally we mention the papers [3], [16), [17], which are
related to our approach.

Throughout the paper, we use the L2({2)-based Sobolev spaces H* (), consisting
of functions with partial derivatives of order less than or equal to & in Z%(f2). These
spaces are equipped with the norms and seminorms

ul g = /n T (D,

la|<k

2 ¢ = f 3 D2,

2 o=k

We also use the spaces H*(2) for fractional k. H}((1) consists of those functions in
H(Q) that vanish on 8Q. We also use the space H~1(Q2) = [H}(Q?)]". Throughout,
C denotes a generic constant. When we say there exists C = C(a, 3), we mean that
C depends on the coefficient a(z,y) only through its upper and lower bounds @ and

3 (cf. (1.2)).

2. Regularity results. It is clear that problem (1.1} has a unique (weak) solu-
tion in H}(Q); compare (1.3). This is an immediate consequence of the Lax-Milgram
theorem. Furthermore,

lullne < Cla)llfllo.a-

But if a(z, y) is rough, then u may not be in H*¢(Q?) for any £ > 0, and therefore we
cannot expect any reasonable rate of convergence for the usual finite element method.
Nevertheless, as a consequence of the assumption that o(z,y) is unidirectional, the
solution v does satisty a regularity property that can be employed in the derivation
of an approximation methed for (1.1) with a good rate of convergence, even though
a{z,y) is rough.

It is the purpose of this section to prove such regularity results, first for the model
problem consisting of (1.1) with & = Qp = (0,1) x (0,1) and the coefficient a(zx, y)
satisfying a(z,y) = e(x), that is, with a straight line unidirectional coefficient (cf.
Fig. 1.1), and then for the more general problem with a curvilinear unidirectional
coefficient {cf. Figs. 1.2-1.3). Our main tool is a theorem of Bernstein [6], [13, §3.17]
for elliptic equations in nondivergence form, which we now state.

Consider the problem

u 8*u 0%u
- A Ml — = in
(21) a (.’L‘, y) 6372 2“12('1:! :U) azay a22 (SC, y) 6’y2 f m s,

4= on 95,
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where © is a bounded convex domain in R? with a Lipschitz and piecewise C? bound-
ary 08 and where the functions a;; € L*(2) satisfy

2

2 2
22) vy €< aylnpbg<ud & Ve VE R,
i=1 i=1

i,j=1

with az1 = @12, where v and u are positive constants. Note that the equation in {2.1)
is in nondivergence form.

THEOREM 2.1 (BERNSTEIN). For each f € L?(9), problem (2.1) has a unigue
solution u € H*(Q) N H}(SY). Furthermore, there is a constant C(v, u), depending on
v and p but independent of f, such that

(2.3) llullz. < (@ Wl fllog

Our hypothesis on £ is not identical to the one in [13]. To prove that (2.3) is still
valid for such a domain, one can use the a priori estimates given in [11, §3.1].

The first application of Bernstein’s Theorem will give a regularity result for prob-
lem (1.1) when © = €y and a(z,y) = a(z). Corresponding to problem (1.1), with
this assumption, we define the space

ou Bu

2.4 HE(Q) = HYY - — ., —eH!
(2.4 @ ={ue @ a0 5 e @)
with the norm
(2.5a) lul?.0 = luli o + luli o
where

a { ou\| % |° 1|8%u)?

2 —_— — —— ——— P —

{2.5b) |'U‘|L’g—\/n(ﬂ B (aax) +a 525y a |35 dr dy.

THEOREM 2.2. Suppose @ = Qy and a(z,y) = a{z). Then for each f € L*(Q}) the
solution u of (1.1) is in HY}(Q)NHL(Q). Furthermore, there is a constant C = C(a, §),
depending on « and 3 but independent of f, such that

(2.6) lullz.e < Cla, B)l fllo,0-

Proof. Let u be the unique solution to (1.1) in H}{€2). We introduce the change
of variables or mapping

(2.7) #(x) = /D " % i) =y

and the notation

(2.8) w(z(z), 5(y)) = u(=,y), (z,y) € €L
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The mapping (2.7) maps the domain € onto Q = (0, f ! ﬁ% (0,1). We see that

i € H*(Q) if and only if v € H'(Q),ad2, & % € H'(Q), which is equivalent to u €
HE()). We also note that the weak formulation (1.3) of (1.1) is transformed into

@ € Hy (%),
(2.9) 536
X T X )
fﬂ (ﬁﬁé +a % % ) dz dj = [ favdidi Vo€ HQ).
The system (2.9) is simply the variational formulation of
2. 2 _ B
_3__:1; a? &u =af inf2,
(2.10) oF i
2=0 on &).

Note that while the equation in (1.1) is in divergence form, the equation in (2.10) is
in nondivergence (as well as in divergence) form. As a consequence of Theorem 2.1,
(2.10) is uniquely solvable in HE () N H2(1)) and

(2.11) iy g < Cla, B)Ef o -

Because (2.10) is uniquely solvable in H3({), we conclude that i, as defined in
(2.8), which satisfies (2.9), coincides with the solution of (2.10) and hence lies in
H}()) N H2() and satisfies (2.11). Thus, v € H3(Q) N HE(Q), which is the first
conclusion in the theorem. If we change variables in the estimate (2.11) to return to
the original variables, we obtain

lull? o f 24y d +/ dul*|ou®) g
L.Q n” Y Bz By Y
8 [ du % |° 1|8%
+f( 33‘:(3) +a—3:c3y + 3y2 )dzd’y
o l? 6u .
./nu ada:dy+]( 5% 6" )d:z:d
+f @+—-—32ﬁ2+32ﬁ di dj
o \|oz2| T |3zag| T eE| |

1 -
< max (5, ) falZ
< max (5,2 ) ¥ A1,

< 3% max ( ) C* (e, B3

which is (2.6). o

Theorem 2.2 was proved by making a global change of variables and then applying
the Bernstein result. The global change of variables exists because a{x,y) globally
varies sharply in one direction: a(z,y) = a(z). We now prove a second result in which
we assume the existence of only a local change of variables (cf. Figs. 1.2-1.3).
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Let £ C 2 be open and assume that we have a system of orthogonal curvilinear
coordinates (£,n) defined on X. More precisely, regarding 3 and (£, %) we assume
(i) the functions £, 7 are defined on I and are twice continuously differentiable,
(i) (£,7): X — %' is one-to-one and onto,

(ii) gg;g) >~v>0o0n%,
(iv) grad £- grad n=0inE,

(v) Zisa recta;ngle in &, 7, that is, &' = (2}, £2) x (n}, 7)), and
¢, in which case all edges of ¥ are called
interior edges

iy Enoa={ *

the union of one or more edges of ¥, in which case
these edges are called boundary edges and the

{ remaining edges are called interior edges.

The union of the interior edges is denoted by E. We suppose further that

(2.12) a(z,y) =a'(§) V(x,y) €,

where we use the notation, for any function w defined in ¥,

w'(g(a:, y),ﬂ(m,y)) = w(z, y), (z,y) € L.
See Figs. 2.1a,b for typical configurations.

¥y

Level curves of 1

Level carves of &

(a) (b)
Fiac. 2.1.
THEOREM 2.3. Let u be the solution in Hy(Q) of (1.1), where we assume that f €
L*(R) and that a(z,y) setisfies assumptions (1.2) and (2.12), where £, (£, 1) satisfies
conditions (i)-(vi) above. Let O C X be open and satisfy O CC E if XN = ¢

and HON AT C AN if TN ON # ¢, and let O be the image of O under the mapping
(&,1) {¢f. Figs. 2.1a,b). Then there is a constant C = C{e, 5,€,7,d) depending on

a, 3,£,7, and d but independent of f, such that
1/2
8%/ 2

|8 7, ou
(2.13) (-/o [“ % (“ 6_5) og0n

< C(CE, ﬂ?E? Wad)”f“(),ﬂa

2 2

+a

PPl
n?

1

o

7
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where

g dist(©, E) if E # &,
1,if E = ¢.

Proof. Clearly u (more precisely, u|x;) satisfies
v € HY(%),

(2.14) fa grad u- grad vda:dy=ff’U dedy Yve Hi(E).
- b

Introducing the change of variables (£,%) in {2.14) we get

o' ' o' ' a(z, y)
grad €%+ ad 7% | —2déd
Le (ae el B2 gy | B "")a(s,n)d”

(2.15)
d(z,y) y)
"' dn W' € H(X').
Now we introduce a second cha.nge of variables,
= ¢ dt
2. = i 5

where &}, is the £-coordinate of the left edge of £'. We use the notation

W' (€&, ), iWE,m) =w'(&m), (&m)€X, forany function w’ on T’

%' = image of £’ under the mapping (£, 7).
Applying this change of variables to (2.15) we get

- Bu ov’ 6
2 17 ~I — + ~I2~I

where

(2.18)  ai(¢,m) =1 grad ¢

O aan= [ Fow 20D agaq i < my(s),

I(z,y) |2( y)
o, m)’ 8, m)’

To apply Theorem 2.1, we need to introduce Dirichlet boundary conditions. From
condition (vi) we know that any edge of X is either an interior edge or a boundary
edge. Then, through the correspondence determined by the mappings ({,7) and (¢, 7),

we refer to the interior and boundary edges of ¥’ and ¥'. Now let = C°°(E’ ) with
QS’(E, i) = 0 for (£,7) near the interior edges of 5. Then for ¥ € H}(E),d'd’ €

H}(3') and we can replace % by ¢t in (2.17) to get

=~/ 6” "_ ~13§E, ~12~f6_ﬂ, “'18_1'}' ,,,6_&)” - 1o
f( g (¢ 0 ag")+a 5 (¢ o+ aﬁ))dfdn

o B(ETY) L2
AL

a3 (€, =| grad
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or
8 o' 8 = O\ - ~
) =1 1! ¢ 93 SN dEdn = S dE dF
(2.19) / ( B£(¢ )a§+ zaﬁ(cbu)aﬁ) gdii /;_:,def 7,
where
51Tt (m:y)_2~»'@’8_&_2~l2~l o’ 6('25" TRETI ~fa_¢" ~I2~1%
f¢a‘ (E,ﬂ) a1 ag 8&: a Gy o a7 Bﬁ —u dlvf;ﬁ ((11 aé,a g aﬁ) .
(2.20)

Writing w = &'¢', from (2.19) we get

weE H&()j’),
(2.21) L Ow By o ,Bw v S TR 15y
f ( o of T an)dgdn LIdeﬁdn Vil € HASY).

w € H}(3) because ¢’ = 0 near the interior edges of £, Because @' is in H(X'), the
functions £,7 are C2, and & = &'(£), we see that F is in L2(¥'). The system (2.21)
is simply the variational formulation of

(2.22) _6% (&’1%%{) - &’2(5)5% (ag%‘f) =F ¥

w=0 ond%.
The equation in (2.22) can be formally written as

9w 82w aa) ow dal, Ow
2.23 —d = —aF e = F+ L R 2 =
(2:23) ! oé2 2 O 9E 9E a7 i

Denote by W the unique solution in H2(£') N HA(') of

2 W g OW

2.24 - — = G’
( ) 862 2 an2
which exists by Theorem 2.1 and which satisfies

(2.25) Wllz5 < Cle, 8,6 MGl 5 -

Now w € H&(ﬁ’) solves the same problem formally. We want to show that w = W
and hence that w € H2(X') and satisfies (2.25). Writing (2.24) in divergence form we

obtain
__(?: (~f BW) 1'2 a (~.r aW)
Ot e on
W 2w 83, W aa, oW
2.26 =i — &% _90 oW L0
(220 Vol " o T o of 3% o
_pi 08 8, Bw +a’2@6_‘” B oW a,za% aw

OF 9 o 87  Of OF a o
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Letting U = W — w and using (2.22) and (2.26) we see that

) (H,BU) a,za (~,8U) 89U _ 080U o

@221 { 9\ a a7y B¢ 5? T B oq
U=0 ond%,

where we understand the equation in the weak sense. It will suffice to show that
U=0.

Let T : H-1(E') — H}(E") be the solution operator corresponding to the problem
(2.22), that is, let TF = w. Then from (2.27) we get

dat 6U ., 8ah 8U
2.28 U=r 2—?—~) = AT
(2:28) ( 8¢ OF ~a of of

Because T : H-4(&') — H}(Z') is bounded and H®(E’) is compactly contained in
H-1(5), we see that A : HL (X)) - H}(E) is compact. Suppose now that U # 0.
Then from (2.28) we see that 1 is an eigenvalue of A. Hence, 1 is an eigenvalue of A*;
let V be an associated eigenfunction.

We can choose V' € H3(E') N H}(£') so that [V — V'l 5 < [[Vl; 5. Then
(V,V') g1 (g # 0 and from the Fredholm alternative we see that the problem

(2.29) (I-AZ=V

has no solution in H3(Z’). Recalling the definition of A we see that equation (2.29)
can be written

8t 0Z ., 08, 8Z
2.30 Z-T 2—3—~) =V,
(2:30) ( ag % " B o

which can be formally written as

3 (H, az) i a (,,, az)
€ ot M on

_0# 02 ;08,02 (ﬂ, av') 20 ( av')

O B¢ o 00 oF OE o\ * an

or
~,a Z . ,a?z ] (~, BV’) ;. (~, av*)
—a — @ 2 —— —a —
L ag2 o o¢ d¢ on on

But Theorem 2.1 shows that this equation has a solution Z in H2(2') n H(Z').
It is immediate that this Z solves (2.30) and hence solves (2.29), a contradiction.
Therefore we conclude that U = 0. We have thus shown that w = W and hence that
w € H2(3') and

(225’) ”'wnz,ﬁf =< C(a1i61§7n)”G”0,E“

_Now the function @' can be chosen as a cutoff function satisfying ¥ =1o0n,
|Dé’| < C(d')™1, and |D?¢’| < C(d’'})~2, where C is some positive constant, and

7 dist (O, E") if E' # ¢,
1 if B' = ¢.
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Then from the expression for G in (2.23) and from (2.20) and (2.18) we have
I1Gllo, 2 < Cla, B, &m)(d) | £llo,a-

Thus from (2.25') we see that
(231) ”ﬁfllz,(ﬁ' < ”w“2,)’i’ < C(a,ﬂ,{, U &’)”fllﬂ,ﬂ-

Now changing from £, 7j back to £, 7 in (2.31) we obtain

/' ks (a,a_w) i o’
o og\ " 9 0ton on?
which yields (2.13) because €} (a,ﬁ,f,n)J’ < d < Co{e, 8, E,n)d’. O

Remark 2.1. Equation (2.12), with (£,n) and X satisfying the conditions (i)—(vi),
is basis for the precise meaning of the phrase “a locally varies sharply in at most one
direction,” which is fully formulated in §4.1 (see Remark 4.1).

Remark 2.2. If the mapping function £ + in is analytic, then the above analysis
is simplified because in this case the functions a; and ag in (2.18) are equal to 1.

Remark 2.3. We can define the local analogue of the space H”(Q) defined in
(2.5). With %, (¢, 7), and O as in Theorem 2.3,

2 2

+a

1
o

!

2 1/2
} dﬁdﬂ) < O(aa ﬁag?nﬁ £’)|lfl|0,ﬂ'a

Su' o'
HYO) = {u: v € HY(O"),d —, — € H (¢
(©) = fu:v' € H'(0),d 5, 5 e H(O)
with the norm
lull,o = I} o + lul} o,
where
bi] A\ [ 8 > 1 |8%|?
2 _ L Bl [l L il i il
lulz.0 = fo (” B¢ ("‘ 6.5) “\agon| T o ) K

In terms of the seminorm [u|. ¢, {2.13) can be stated as

|u’|L,O < C(a,ﬁyfaﬂy d)"f”ﬂﬂ

Remark 2.4, Theorems 2.2 and 2.3 can be easily generalized to cover coefficients
a(z,y) of the form a;(z)az(y) and a1(£)az(n), respectively, and coefficients a(z,y)
that are rough in  but smooth in y and a(£,#) that are rough in £ but smooth in 7,
respectively.

3. Special methods for problems with straight line unidirectional co-
efficients. In this section we propose and analyze methods on the basis of special
elements to solve the model problem

1ue) = — o (alo) vton) ) - o (olo) o)) = o) W) € 9,

ul{r,y) =0 Viz,y) € dq,
(3.1)
where Q@ = Qg = (0,1) x (0,1), f € L%(Q), and a € L>=(Q) is a function of = only
and satisfies (1.2). This is problem (1.1) with a(z,y) a straight line unidirectional
coefficient. We present three approximation methods, prove they have the optimal
rate of convergence, and discuss their merits. Our results are stated in terms of the
constants « and 2 in (1.2).
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3.1. Approximation Method I. For 0 < h < 1, let C;, be a triangulation of
Q by (closed) curvilinear triangles T of diameter < h, where by a curvilinear triangle
T C 2 we mean the preimage of an ordinary tri~angle~f‘ < §1 under the mapping (2.7).
Corresponding to C, we have a triangulation Cj, of £ by usual triangles. We assume
that {Ch}o<n<1 satisfies a minimal angle condition,

(3.2) hifps <o YT eC, YO<h<I,

where for any bounded set $ C R2,

(3.3) hs = diameter of S
and
(3.4) ps = diameter of the largest disk contained in §.

With Cp, we associate the space of approximating (or shape) functions
Sy ={veL*Q):vlr e spa.n{l,fg;‘z%,y} VT €Cp,
(3.5) v is continuous at the nodes of Gy,
v = 0 at the boundary nodes}.

As a consequence of our choice for the curvilinear triangles T we see that S, C H} (),
that is, S, is conforming. This is easily seen by noting that the functions 1, foz ﬁ%—, Y

are transformed to 1,%,§ by (2.7). Consequently, Sp = {i : v € Sp} (¢ is defined
in (2.8)), the image of Sy under the mapping (2.7), is the usual space of continuous
piecewise linear approximating functions with respect to Cn, and Sy, is conforming
because S, is.

Our finite element approximation u, to u is now defined by

Up € Sh,
(3.6)
B(up,v) = [, fvdzdy Vv eS8,

where B is defined in (1.3). The function up is just the Ritz approximation to u
determined by the variational formulation (1.3), in the case (3.1), and the space
Sy, defined in (3.5). Because it is easily seen that i, is the Ritz approximation to i
determined by the variational formulation {2.9) and the space Sy, we could, or course,
carry out the computation and the analysis on the transformed domain 2. We shall,
however, study the approximation on the original domain  because this approach
better illuminates the more general case of a curvilinear unidirectional coefficient
studied in §4.

It is immediate that B is a bounded bilinear form on H} () x H}(2). Furthermore,
the stability condition (cf. [1]} holds, that is, we have the following.

THEOREM 3.1. There exisis a constant 6(a) > 0, independent of h such that for
all0<h<1,

(3.7 inf sup |B(v,w)| = &a).
uESLA  weSyp
lelly, =1 fwli,n=1
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Proof. Because B(v,w) is symmetric it is sufficient to prove that B is coercive,
that is, that

(B(v,v)| > 6(a)||v||in Yo € Sh, O<h<1.

This is immediate.
Approximability here involves the approximation of the solution u by a linear
combination of the shape functions 1, [ a‘g ,¥ in terms of which 93 is defined. Let

the points Py, Py, P53 € {2 be the vertices of T and let P, }32, 133 be the vertices of T'
(cf. Fig. 3.1). Because the functions 1, f: ﬁ%,y are transformed to 1,%,7 by (2.7),
we see that the interpolation problem: Given numbers w;, ws, w3, find

(3.8) w(m,y)=a+ﬁ/:;%:—)+

satisfying w(P;) = w;, 1 = 1,2,3, is uniquely solvable.

A
lly 5
(0,1) 1,1 0,1) (j afx)’ )
Py 1“53
ti Py *AFQ
P, Fi
0,0} 1,00  x {0,0) Z
(Ia(x)’ )
Fia. 3.1.

Suppose u € HE(T). Then & € H*(T), and hence 4 has well-defined point values for
any P € T. Thus u has well-defined point values for any P € T, and we define the
span {1, f: a‘i: , }-interpolant of w on T by

dru=a+ ﬁf + vy, dyu(F;) = u(F;).

‘We derive now an estimate for the difference u — dru. |
THEOREM 3.2. There is a constant C = Cla, 8), depending on a, 3 but indepen-
dent of T and u, such that

h?.
(3.9) |u—-dTu|1T < C |U(LT Yue HL(T)

where ht, p7 are defined in (3.3), (3.4).
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Proof. Using the transformation (2.7), we have
2

18, .
w-drllr= [ wed - droPasay= [ 226 ar0) aads
2
(3.10) +fa 2(ﬁ-d»ﬂ) dF djj
7 |0 T

N .,
< max (ﬂ, E) |2 — dzal] 5,

where d#i is the span{l, &, §}-interpolant of @ in the triangle T. Applying the usual
linear interpolation theorem (cf. (7, p. 121]}, we get the bound

(3.11) |ﬁ_df‘ﬁ|1,f" < C_'I_"|'*1|2,’I">
P

where C is an absolute constant. Inequality (3.9) is a consequence of {3.10), {3.11),

and the definition of the seminorm |- |1, with the constant C{max{3, 1))!/2. f
We define now the Sy-interpolant of u € HX(Q2) by

dpu € Sh,
(3.12)
dpu(P) = u(P) for all nodes P € C,,.

As an easy corollary of Theorem 3.2, we can state our approximability result.
THEOREM 3.3. There is a constant C = C(a, 3, 0), depending on o, 3, and o but
independent of u and h, such that

(3.13) lu—drullio < Chlulpe Yue HYQ), 0<h<l

Proof. Because the function u — dpu is in Hg((2), from the Poincaré inequality
we have

(3.14) I - drulf o < CE) Y lu— druffr.
TEC),
Combining (3.9), (3.12), and (3.14) we get
hi
(3.15) le—drulfe <C 3 —lullr < Co® max hilul} o
TeC, ' T

It follows immediately from the definition of the mapping (2.7) that
(3.16) hs < max (é,l) hr < max (é,l)h YTe€dl.

Finally, estimate (3.13} follows directly from (3.15) and (3.16). o

As a consequence of the stability, approximability, and regularity results, we ob-
tain an estimate for the error u — up, in the H1(Q)-norm.

THEOREM 3.4. For f € L?(f1} let u be the solution to (3.1) and let up be the
solution to (3.6), with Sy, defined in (3.5). Then there is a constant C = C{w, B,0),
depending on o, 3 and o but independent of f and k, such that

(3.17) e —unflie < Chlifloe,  0<h<1
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Proof. Tt follows from Theorem 3.1 and standard results on the approximation of
problems in variational form that

(3.18) lu — unli0 < C inf [Ju—x|10
XESh

Combining (2.6), (3.13), and (3.18), and the fact that » € H}(Q) implies dpu € Sh,
we have

lv — urll1,0 < Chlfllo.q:

where C' = C(a, 8,0). 0

Theorem 3.4 shows that the method defined by (3.6) is accurate and robust for the
approximation of (3.1), that is, the convergence is of first order in the mesh parameter
h with a constant depending on o and 3, but otherwise independent of the coefficient
a{z). Thus the method has the same accuracy as the usual finite element method
based on C°, piecewise linear approximating functions for smooth problems.

Remark 3.1. Approximation Method I, as we have presented it, is based on a
triangular mesh. One can also consider rectangular meshes. Thus for 0 < A < 1,
let Cp, be a partition of 2 by rectangles R of diameter < A and suppose {Ch}ocn<t
satisfies a “minimal angle condition” ((diam R/diam of largest disk contained in R)
< o for all R € C, and for all 0 < h < 1). With (), we associate the approximating

functions
x xr
Sy = {v € C*() : v|g € span {l,f %,y,y/ dt}VRECh,
0

D E
v=>0 onaﬂ}.

The finite element approximation uy, is defined by (3.6) with this choice for Sp.
Then it is easily seen that the arguments used to prove Theorem 3.4 yield

(3.17") lle — unllie < Cla, B, 0)h| flloq,

the same estimate proved for triangular meshes.

Remark 3.2. Method I has an obvious one-dimensional version. This one-dimen-
sional method differs from the standard finite element method based on C°, piecewise
linear approximating functions in that the coefficient a(z) enters the finite element
calculations via its element-by-element harmonic averages instead of via its averages
{and the right-hand side is treated in a slightly different manner). It is referred to as
a generalized displacement method (cf. [4]). In the methods presented in this paper,
the coeflicient a{x, y) enters the calculations via various element-by-element harmonic
averages and averages, that is, via various element-by-element moments of 1/a(x,y)
and a{zx,y).

3.2. Approximation Method Il. In Method I we chose trial or shape functions
that closely approximated the unknown solution. We then used the same functions
for test functions, and the stability condition was immediate. To ensure our methods
were conforming, we used curvilinear triangles. In this subsection, we discuss a second
method, employing the triangulation by ordinary triangles shown in Fig. 3.2, the trial
functions used in Method I, and C° piecewise linear test functions. Now the trial
space will be nonconforming, but the test space will be conforming.
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vk
¥o=1
¥a
¥,
yl;co X, x =1 -;(
Fic. 3.2
For h == %,n = 2,3,..., let C; be the uniform triangulation of (), with nodes

(zi,¥;) = (ih, jh), 4,5 = 0,...,n, shown in Fig. 3.2.
For use in our analysis, we introduce the mesh dependent spaces

(3.19) Hiy() = {ue L*Q) ulr e H{T) VT € Cr}

with the norms

ul, = fn W dody+

= | u?drdy+ ] grad ul? dzdy.
/ > [ e u

TeCh

(3.20)

It is clear that these spaces are Hilbert spaces.
We define the bilinear form By on H} (Q) x H(Q) by

(3.21) By (u,v) = Z /a grad u- grad vdzdy.
TeCh T

Clearly By, is bounded on HL(Q) x H}(f), with a bound that is independent of k.
Moreover, By(u,v) = B(u,v) for all u,v € H}(2). Now we define the trial space S,
and the test space Sy,

T dt
Sip={vel?(Q):vre spa.n{l,f —dm,'y} VT eEC,
o aft)

(3.22) v I8 continuous at the nodes of Cy,,

v = 0 at the boundary nodes}

and
(3.23) Son={v € C°Q) : vr € span{l,z,y},vlon = 0} .
We remark that S) ; ¢ H§ in general, so S) 5 is nonconforming as mentioned above.

Qur finite element approximation w to u is then defined by

up € 514,
(3.24)
Bh(uh,v) = fﬂ f’U dr YveE Sz,h-
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Note that the space H(€) is not well suited for a weak formulation of the exact
problem (3.1). Nevertheless, the error analysis of (3.24) can be carried out in the
usual way. Let us suppose that a stability condition holds for {3.24), that is, there
exists & = 6(a, B} such that

(3.25) nf sup |Bp(u,v)| 2 8, 5) >0 VO<h <L

i
wESLp vESy )
Nully,p=1 vl n=1

Because dim 51,5, = dim Sy , (3.25) implies that (3.24) is uniquely solvable. For any
u € HY(Q2), we define Pyu by

Pru e Sl,h,
(3.26)

Bh(Phu, v) = Bh(u, ‘U) Yuve Sz,h.

It is clear that P is a projection onto 57 ». This projection is uniformly bounded in
h; in fact by (3.25} and (3.26) we have

| Puuellp < 8(a, B)7 sup |Bu(Pru, v)] < Cla, B)llullsn ¥ u € Hy(Q).
v 2,k

Moily, =1
For u the solution of (3.1) and u;, the solution of (3.24) we have for any x € Sy a,
lu—unllin = |l — Paullin = (e — x) — Pa(u — X)lh,p < [1+ Cle, B)] e — x||1,n-
Thus we have proved there exists a constant ¢' = C{a, ) such that

(3.27) lle — wnllie £C inf ju—x|hn
XES1,h

(cf. [1]).
‘We show now that the stability condition (3.25) holds.
THEOREM 3.5. There is o positive constant § = 8(cv, 3) such that

(3.28) inf  sup |Bu(u,v)| > 6,8 YO<h<L
vES h  weSyp
lulin,n=1 oy g=1

Proof. Let ap, : (0,1} — R denote the piecewise harmonic average of a(x}, that is,
let

(3.29) anls, = {h‘ ‘/: %} )

where I; = (1, ;). For any u € S; p, let v € Sz, be defined by
v(P) = u(P} V nodes P of Cy.
‘We will verify now the relations:

Ju dv 0u v

(330) a'é; = ahga;, ‘3; = 5!;

Let us first consider a triangle T of the type shown in Fig. 3.3.
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vk
(xi—-l’ }’J) (Xi, yJ)
(Xi—l’ yj—l)
X‘—‘
Fic. 3.3.
On T' we have
— i — i) —(z—zi—
U(g:’y) = u(x'i—l,yj—l) {]_ - y_.,.gj_.l.} 4 u(mi—lgyj) { (y Yi 1) - ( 1)}
T — X
+’U(IB.5, yJ)Tl
and
o
— Ui — Y Ti-1 gt
(@, y) = u(@i_1yi-1) § 1 — T H L 4 u(wi,yy) W=y (t)
h h o dt
= aff)
o
' alt)
+u($hyj)ﬁ-
o)
From these two formulae we clearly get
du  ulm,y;) —ulzio,y) R v Su B
bk : —ap—, — = — T.
e h S % e Oy Oy .

On the triangles of the type shown in Fig. 3.4 the proof follows the same lines. So the
relations {3.30) are proved. Now using (3.30) and the Poincaré inequality we have

Ju v Ou Bu
Ba(w,v) = Zf{axax aa}dd

TeCy

>a 3 [ lemd ofdedy=clvfo> lia
Telh

(3.31)

To complete the proof we still have to bound ||v||1,o from below in terms of |ju,||1,5.
Using the relation (3.30) we obtain

s wtam 5 [{(28)'5 () e (2) o
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(Xi’ YJ)

1 ¥j0) (x;, ¥5.0)

Fic. 3.4.

On the kind of triangles T shown in Fig. 3.3 we have

f |ul2da:dy = / ae(zi—q, 45--1) {1 _¥- yj—l}
T T h

dt dt
+ulzi—1, ;) PEE— +U($i,yj)‘:j—‘—“d‘—t“| dz dy
fmi_l—(}j =1 )

(3.33) X ; .
<3 T{lu(ivi—l,yj—l)l + fu(wio1, y;)|° + |ules, y;)|* Yz dy

h2
= 3—2*{|u($i—1,yj—1)|2 + @i 1, 95)* + [z, y3)°}

SC/ |v|?de dy.
T

On triangles of the type shown in Fig. 3.4 we have the same estimate. Inequalities
(3.32) and (3.33) show that

2
(3.34) Il < (4 (5) PP0la.
From (3.31} and (3.34) it follows immediately that (3.28) holds with
2
o B
b= — - =172 0
5 {C+ (a) }
For u € HL(Q), let dpu be the ) p-interpolant of u, that is, let dyu be defined
by

dpu € Sl,h;
(3.35)
dnu(P) = u(P} V nodes P of Cp;

dpu is well defined because u is well defined on the nodes and because the images of
the vertices of any T € Cp, are noncolinear. In the next theorem we derive an estimate
for the interpolation error flu — dpu||1 5.
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THEOREM 3.6, There is a constant C = C(a, 3), depending only on o and 3 but
independent of v and h, such that

(3.36) = dnulip < ChiulLa YueHHQ), O0<h<L

Proof. This proof is similar to that of Theorem 3.3. Let u € H L), T € Cp, and
Rt be the smallest rectangle containing T'. Let T', Ry be the images of T, R under the
mapping (2.7). Then, applying the usual linear interpolation theorem as in (3.11), we
have

k2
. ~ Rr )~ .
(3.37) i —dpul; g, < CE—T_|U|2’&T, i=0,1
Ry

To obtain the result in the original variables we note that

3.38 i —dyull s = dyuSdzdy > > — dyul?
(3.38) it — h“|0,f;T = R |u — dpul 2 ray -~ Ehﬂ— hUIO,RT
and (cf. {3.10))

o - . 1
(3.39) |& — dyul? . > min (a, E) lu — dpul} g,

By the definition (2.5b) of the seminorm | - |1, g, we have
(3.40) %, 5, = lulL,Rr-

With (3.38)-(3.40), inequality (3.37) yields

hi
(3.41) lu — drulir < Cle, B) = b rpy  4=0,1.
Py
From (2.7) we have
1 ) 1
(3.42) hg,. < max E'l hR., P, = min | 1, i PRy

Finally, (3.36) is a consequence of (3.41) and (3.42). 0
As a consequence of (3.27), (3.28), (3.36), and (2.6) we obtain the following,.
THEOREM 3.7. For f € L*(), let u be the solution to (3.1) and let uy be the
solution to (3.24). Then there is a constant C = C(«, §) such that

{3.43) v — wrlla,n < Ch|| flloq. 0<h<1.

Remark 3.3. In Remark 3.1 we briefly outlined Method I for rectangular meshes.
Here we give a rectangular mesh version of Method I1. Let

- < dt T odt
— 0 . Rl
Sl,h—«{vec (M) :vjg e Spa.n{l,‘/0 a(t),y,yfo a(t)}VRECh,

szonBQ}
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and
Sap = {v € C'(Q) : v|g € span{l,z,y,zy}V R € Ch,v =0 on o0} .

Our finite element approximation uy, is now defined by (3.24) with this choice for Sy ,
and Sz 5. In this situation we need a hypothesis on a(z) in order to ensure stability.
Let

o2
gilz) = =L and g;="—"7,
J"Ii _t h
Ti-1 a
and then let
Ti
A,', = h_l f a d.’E,
i1
B, =h"! f pia dz,
Ti-1
a4
Ci = hil f 1/),-¢¢-a d:L',
Ti 1
and
D; = h_lf Pia dz.
Ti—1
We assume

44,C; — (B; + D;)?
4C;

Then (3.28) holds with § = §{(«, 3,v) > 0. We therefore obtain

(343’) “u - uh”l.ﬂ < C(av ﬁ,7)h'|f”0,ﬂ

>v>0, Vih

We remark that §; ;, is conforming in this rectangular mesh case in contrast with the
triangular mesh case in which 5} j is nonconforming.

3.3. Approximation Method III. In Method I we introduced curvilinear tri-
angles to ensure the approximating functions were conforming, whereas in Method
IT we used a special triangulation with ordinary triangles obtaining a nonconform-
ing method. In this section we design a conforming method based on an arbitrary
triangulation with ordinary triangles.

For 0 < h <1, let Cp, be a triangulation of Q by ordinary triangles of diameter
< h and suppose {Ci }o<ch<1 satisfies

h
(3.44) Zr <0 ¥TECh, V h (minimal angle condition)
and
{(3.45) Eh— <v YT el Yk (quasi-uniform condition),
T
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where hr, pr have been defined in {3.3), (3.4). Let P, ..., Py, be the nodes of Cp,.
The function 1; denotes the usual piecewise linear basis function associated with the

node P; = (z;,y;),j = L,...,my, that is, ¢; is piecewise linear with respect to Cp,
P;(FP) = bizs
we remark that
Ly
D ti=1
3=1

For each j € {1,...,mp} let

x

v = span{qp,.(m,y),apj(x,y)fm %,wj(z,y)(y—yj)}-

1

For the space of approximating functions we choose

™
(3.46) Sp = U:Q—>]R:’U=Zvj,vj61/},v=ﬂon39
=1

Our finite element approximation uy to u is now defined by

Uy € Sh,
(3.47)
Blup,v) = [ fvdedy VveS,.

The function up is the Ritz approximation to « determined by the variational for-
mulation {1.3) and the space Sy defined in (3.46). To study the convergence of the
approximation (3.47), we turn our attention to an approximation result for {Ss }o<n<1.

First we show that we can approximate u € H"(Q) by a linear combination of
L N a‘g ,¥—y; on S;, where for j = 1,...,ms, 5; is the finite element star associated

w1th the node P;:

=yr

Tec,
PjeT

Let R; be the smallest rectangle with sides parallel to the axes containing .S; and
let J; be three specific vertices of R,, mcluding all vertices that lie on 982. For any
u € H*(R;), we define the span{l, f PrOTE A y; }-interpolant of u associated with

Pj by
*dt
(348) djpu=a+ ﬁf‘ a(_t) +v(y—1), (djpu)(P)=u(P) VPeJ;.

We will prove the following approximability result.
THEOREM 3.8. There is a constant C = Ca, 8} such that

h%
lu — d; puli,s; < Cle, ) pf”

£

Vi=0,1, j=1,...,mp, u€HQ),

0<h<l
(3.49)
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Proof. Let j € {1,...,mp} and v € H*(Q) be given. With the node P; we
associate the finite element star S; and the rectangle R;. 5; and R; are the images

under the mapping (2.7) of S; and R;. Clearly, ﬁj is also a rectangle. It follows
from (2.7) and (3.48) that d - u is the span{1, %, §}-interpolant of 4, that is, d - u €

span{l, #,j} and d, hu(P) = @(P) for all P € J;. Thus
h2

(3.50) it — d;7ul, Ry S C——{ﬂu.|2 By i=0,1
pR_,

Returning to the original variables in (3.50) (cf. (3.38)-(3.40)), we obtain

hZ
R; X
(3.51) |u — dj,huh,Rj S C(CE, 6)7""“‘&1313 1= 0, 1.
pfi,-
As in (3.42) we have
1 ) 1
(3.52) h&j < max (a, 1) hg;, pj, = min (1, E) PR;-

Finally, (3.49) is a consequence of (3.51) and (3.52). a

Before stating an approximation result for {Sp}o<n<i, we prove a technical
result.

LEMMA 3.1. Let {Cr}ocn<1 be a family of triangulations satisfying the minimal
angle condition (3.44). Let Py, ..., Py, denote the nodes of Cy, and let S; be the finite
element star associated with Pj. Then we can partition the set {Py, ..., Py, } of nodes
into o finite number of disjoint sets Iy, ..., I;, with £ depending on o but independent
of h, such that P;, P; € Ii,i # j, implies 5 ﬂSoj = z(SZ— denotes the interior of S;).

Proof. The proof is simple; in fact, we give an algorithm to construct the par-
tition. We assimilate the triangulation to a graph, the edges being arcs. Because
of the minimal angle condition, a node F; has a limited number of arcs TJ,:—Pik, Q=
{P,, : k = 1,...,%} being the neighbors of F;, with ; < +, where v depends
on o but is independent of ¢ and h. We now state the algorithm. To construct
1; we do the following. First take P; in I;; then take the node of smallest index
sin {Py,..., Pp, N({Pi} U @1), to ensure §; NS, = @, and so on until the set
{P, ...,th}\({P1} U U{P}u@, ) is empty. To construct I, we do the
same as before with the subgraph of nodes {Py,..., Py, }\/1. From the minimal an-
gle condition and the construction of I, a node of this subgraph will have at most
v -~ 1 arcs. In this way we construct I3,.... The algorithm will stop after at most
steps. 0

THEOREM 3.9. There is ¢ constant C = C(a, 8,v,0), depending on o, 8,v, 0 but
independent of u and h, such that

Mh
(3.53) =Y didjau| <Chlulpe VueHYQ), 0<h<l

1,02

Proof. Let u € HY(2) and let Iy, ..., I; be the partition of the nodes of C given
in Lemma 3.1. Then, because supp v; = §;, we have
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ki3 2 2
=3 id; (v — dj n)
J=1 1. ,
2
quj J,hu
k=1jcl; 1,0
é 2
<SEY D bilu—dypu)
k=1"'jel i,
4 2
=63 [ |3 wrad (- dywu)| dady
(3.54) ; Q jez;; ! !
,gz [, T e = s
JEfk

+¢; grad (u— djpu)|*de dy

<uy_ ]S g ) dal
+l4; grad (u— djpu)|*}dedy.

We note that with the assumptions (3.44), (3.45), we have the bounds

1
(il <1 and | grad o5 < <2 <2
min pr = min Ay h
P;eT PeT

Thus from (3.54) we get

2

Z"/)J 4. h U

j=1

PeT

< 2EZ { i 7 / lu — d; pul®de dy

(3.55) 10

| grad (v~ djpu)|*de dy
55

We now use Theorem 3.8 in (3.55) to get
2

(3.56)

mp
u— Y Yidjnu
j=1

)
<2£Caﬁ)z mmp + =2 3 |ull g,

162 P,eT PR

With the assumptions (3.44) and (3.45), the following estimates are obvious:

hr h
h <2 hr < 2h > > —>—
R; ma.x T ' PR; mlﬂ pr =2 }I)Ilg,} P
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So the inequality (3.56) becomes
2

™mhy Mh
(3.57) w—Y Pidipul <Ol B0, )02 Juli 5.
i=1 1,0 =t

my
It remains to estimate . |ul2 , . We have
=t

mh
(3.58) STt} g, < Y. Nrluldr,
j=1 TeC,

where N7 = The number of rectangles R; such that TNR; # &. Let us now show that
under the assumptions (3.44) and (3.45) the numbers N are bounded independently
of hfor al T € Cr. Let T € C, be given. If TN R; # @, then P; lies within the
(closed) disk D of radius (v/2 + 1)h centered at the center of 7. To estimate the
number of nodes lying inside D, we first estimate the number N of triangles K that
lie inside the disk IV of radius (v/2 + 2)h. Because from (3.44), (3.45) we get

,n.hz h2 2
Bog7 STies ST < area(K),

we have the estimate

mh < Z area(K) < area(D') = n(2 + v2)%h?,

Nos—
4202 —
Kcp'

and hence
N <420%(2 + V2)2
So for Ny we have the bound
(3.59) Np <120%6%(2+42)2 YT €, O<h<l

Finally combining (3.57)—(3.59} we get
2

mu
(3.60) u—Y widiaul < Ch%ul} g,
3=l 1,9

where C depends on a, §,r,¢ but not on u nor on h, which is the desired resuit
(3.53). 0
As with the Approximation Method I, the stability condition is immediate (cf.
Theorem 3.1}. In the same way we proved Theorem 3.4, we can prove Theorem 3.10.
THEOREM 3.10. For f € L2(Q), let u be the solution fo (3.1) and let uy be the
solution to (3.47). Then there is o constant C = C(a, 3,v,0) such that

(3.61) v — unllio < Chl|flloe, O<h<L

Note that in the proof of Theorem 3.10 we use the fact that u € H(Q2) implies
i pidinu € Hg(Q). This is true because J; contains any vertices of /2; that lie
on J12.
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3.4, Comments on Methods I, I, IT1. We have described three methods for
approximating the solutions of problems of the type depicted on Fig. 1.1. The usual
finite element method is inaccurate for these problems because the solutions may not
be in H'1¢(Q) for any £ > 0.

Methods I and II are closely related. The central idea in these methods is to
exploit the existence of a mapping from the general element to the reference element
that transforms the special shape functions into polynomials and the unknown solution
into a smooth function, and thereby obtain a good convergence rate, For singular
corner behavior and homogeneous material, this idea is exploited in [5].

It is advantageous to use rectangular meshes in ) that are aligned with the
direction of the unidirectional composite, as described by a(x,y), because they are
the images of rectangular meshes on Q. The major difference between Methods I and
IT is in their treatment of the right-hand side f. Because with Method II, f enters
the computation through integrals of f times the usual piecewise linear test functions
(as opposed to integrals of f times the special test functions (cf. (3.5)), Method II is
preferable when many right-hand sides must be treated. On the other hand, Methed
IT is less stable than Method I, leading to larger constants in the error estimates (cf.
(3.17), (3.17), (3.43), (3.43')). In fact, for rectangular meshes Method II may not
converge for some a’s; see the hypothesis on a(z) in Remark 3.3. We note that for
triangular meshes Method IT always converges.

Method III, although similar in its use of good local approximating functions
(e.g., functions satisfying the differential equation), has a rather different character
than Methods I and II. In Method III the alignment of the mesh does not play a
role. Finite element approximating spaces based on shape functions satisfying the
differential equation have been suggested and employed in various contexts. The
main problem in their use is the enforcement of some type of conformity. This can
be done by various hybrid methods, for example see [2], [12]. There are, however,
problems in ensuring the stability of these methods, and some of these problems have
not been satisfactorily resolved. In contrast, Method III has no problems of this type
and is very accurate and robust. For some computational aspects of a similar method
employing harmonic polynomials in a p-version fashion and applied to the solution of
Laplace’s equation see [14].

4. Methods for problems with curvilinear unidirectional coefficients.
The methods presented in §3 cover problems on rectangular domains with coefficients
that globally vary sharply in at most one direction, that is, that are straight line
unidirectional. Here we extend Methods I and III to cover coeflicients that locally
vary sharply in at most one direction, that is, that are curvilinear unidirectional, and
to cover domains with curved boundaries. Method I', the extension of Method I, will
be based on quadrilateral and triangular elements and Method IIT', the extension of
Method III, will be based on triangular elements.

4.1. Method Y. Consider the boundary value problem (1.1} and suppose

eforl <i < w,(f4,&,m) is an open subset of 2 and a coordinate system
satisfying conditions (i)—(vi) ir §2 and for n' + 1 < ¢ < n, where n' < n, (8, &, ) is
an open subset of {2 and a coordinate system satisfying conditions (i)—(iii), (v}, (vi) in
§2, that is, £ = & = &(z, y),n = % = ni(z, y) and if (z, y) ranges over (;, then (£, ;)
ranges over ) = (£5,,63.) X (ng,,nd,), where Q;,&(z,y),m(x,y) satisfy conditions
(1)—(iv}, (vi) if ¢ < n’ and conditions (i)-(iii}, (vi) if ¢ > n’ + 1 (let E; denote the
union of the interior edges of €););
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o {0;}7 , covers ( in the sense that

(4.1) Q=UL,
and
(4.2) o0 = U, {int (Q; N 98 in HN};

o for 1 <i<n', we have

(4.3) a(z,y) = a{zi(&,n),1:(&,m) = ai(§) V (z,y) €,

where ¢ = z;(£,n),y = v:(£,1) is the inverse of the mapping &;(x, v}, n:(z, y) (a; here
plays the role of @’ in (2.12)), and for n’ + 1 < i < n,a(z,y) is smooth on ;.

With {(€, &, m )}, satisfying these assumptions, for each ¢ let O; be the result
of pulling each interior edge of £; (cf. condition {vi) of §2) a distance d toward the
center of £);. Then the O;’s are open sets of the type considered in Theorem 2.3 (i.e.,
Oy, 0, cc ifﬁ,‘ Nat = & and 80; N OQY; C N ifﬁ,’, NaN # E) and {Oi}?:l
satisfies (4.1)-(4.2), provided d is sufficiently small. Note that d = dist(O;, E;). We
consider d to be fixed.

We note that if (1.1) corresponds to problems of the type depicted in Figs.
1.1-1.3 or to a smooth interface problem modeled as a composite material, then
{(€4,&,m)}%, can be chosen to satisfy the conditions outlined above.

We also note that these assumptions imply that 8 is a piecewise smooth (C?)
curve with vertices with angular measure « satisfying 0 < « < 7; in particular  has
no reentrant vertices.

Remark 4.1. If our problem satisfies these assumptions we say that a{x, y) locally
varies sharply in at most one direction. Such coeflicients are, as indicated earlier, also
called {curvilinear) unidirectional.

With ,1,...,Q,,01,...,0,,7n', and a(z, y) satisfying the hypothesis described
above, we now describe the meshes we employ. For 0 < A < 1, let C = {T} be a
mesh on 2 consisting of curvilinear (closed) quadrilaterals or triangles, and satisfying
the following properties:

e Each T is contained in some O; : T C 5f(T), 1<#T) <nm

o If i(T) < n/, then T is the image of a rectangle T’ in Q’i(T) under the mapping

x =7y = i) (€M), Y = Yiery = wir){€, M), that is,
T ={(x,y) : 2 = zyry (& 1),y = vy (€M),

1 1 2 2 1 1 1 2 2
€0,y SE7 SE <7 < €hyryr My < My, <00 S0 S 07 S 00 1

where
(4.4a) 63 =€zl <h,  |m—mp| <h,
T g —nrl T

where 1 < ¢ < oo is independent of the mesh. The mapping (&), 1)) maps T
onto T = (£L,€2) x (pk,n%) and 7' is mapped onto the reference rectangle 70 =
(0,1) x {0,1) by the mapping
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f;l a-(itrr) ‘:n( ™ “'(T] fn 4 (T) “:ﬁ') 'r] T]T
T % _ §
(4 5) 5 £t(T) 7R &2 4t ) rh(T) n 7? -
Jel i Jei T
T 9Ty £ ayry

Thus the composition of these two mappings maps 7' onto 7° = T?, and the inverse,
Fr, of the composition maps T° onto T.
¢ If i(T) > n' + 1, then T is the image of

o TP if T is a quadrilateral,
T —
T? = a reference triangle if T is a triangle

under a mapping Fy satisfying Fy is invertible, and Fr and F ! are smooth,
(4.6) |Fr|1com0 < Ch, |FrlacTo <CR?, |Fi'lieor < ChTY,
and

| Trrlocoo = sup  |Jrp(€.97)| < CR?, |Tp=1l0,00,7 = sUP | Jp-a(a, y)| < Ch7%,

(€, 7)eT® (zy)eT
(4.7)
where
|G|£’OO!Q = &up "DEG(t': 3)”1:;(}22,32)1
(t,5)eQ
ID*G(t, )lico(rz,r2) = max, DG, 8) (s - - 0
“Yi
[l <1
1<i<8
| -|| = the Euclidean vector norm on R?,
and

Je(t,8) = Jacobian of G at (g, s).

The constant ' in these estimates is independent of the mesh. We easily see that

the mapping Fr : T — T defined above for i(T) < n’ satisfies parallel assumptions.

Hence we have T = Fr(T°) for all T, and it is convenient to associate the mesh
= {T} with the set of mappings {Fr}.

e The standard compatibility condition is satisfied. Suppose that T} and 73 are
quadrilaterals with a common edge £ : £ = Ty N Ts. See Fig. 4.1; note that we are
using two copies of the reference rectangle T9. Assuming that £ is the image of the
vertical line segment {(£,7) : £ = 1,0 < # < 1} under both Fr, and Fy,, we require
that

{4.8) Fr,(1,7) = Fr, (L, 7), 0<<l

If £ is the image under Frp, of a different edge of the reference rectangle, we would mod-
ify (4.8) in an obvious manner. Also, if either Ty or T3 is a triangle, the compatibility
condition would be modified in an obvious way.

We point out that our mesh matches the (curved) boundary of §2 by means of
blending (nonisoparametric) elements.
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(0,1) (1,1 (2,1)

Fi1G. 4.1.

flemark 4.2. In the quadrilateral element case, verification of (4.6) and {4.7)
usually proceeds along the following lines. Let T denote the straight line quadrilateral
with vertices a;,7 =1, 2, 3, 4, coinciding with those of T (see Fig. 4.2), let hr = diam
T*, pr = diam of largest disk contained in T, and vz = max{| cos{(ai31—a;)-(@:—1—
a;)}|1 €i < 4(mod4)} and assume

y A )
3
o
w4
A a3
a,i 33
dg
ay "‘_—-ﬁ—__.
T* TO
| - -
x 5 3, &
Fic. 4.2.
hr
hr <h, — <ag, Yr <y <1,
T

where o and + are independent of the mesh. Let Fr denote the bilinear mapping of
T? onto T* and write

FT=F'T+‘I’.

One then makes assumptions on the perturbation @ that imply (4.6) and (4.7) are
satisfied. This procedure is outlined for isoparametric quadrilateral elements in 7,
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Exercise 4.3.9]. The parallel procedure for triangular isoparametric finite elements is
carried out in [7, Thm. 4.3.3].
It remains to describe our shape functions. On T € ), we use the shape functions

491, Fi}(:c,y), F:,Tlé(a:, ¥) Fii(m,y),Fi;(m,y) if T is a quadrilateral

and

(4.9) 1, Fii(m, ¥, Fi; (z,y) if T is a triangle,

where Fr'(z,y) = (Fr, H (z,y), Fr, 1(z,y)), that is, we use the pull-back polynomials
determined by the bilinear shape functions 1, £.7, &7 in the quadrilateral case and by

the linear shape functions 1,£,7, in the triangular case. For ¢(T) < n’ we easily see
that the functions in (4.9) are

Laery(=y)  dt
1

J‘Ei(']") (z.¥) d¢ ) .
(4.10) 1 r ai(T) m(T)(a:,y) —nr (T {x,y) — np I3 Beia
. , , ] .
’ fsl% ﬂ-'itr) 7)% - ’7%* T]%* - T]%w IELT ai;)
T & L Py
Then we let

Sp={ve L) v| r € span of the shape functions on T,
(4.11) v is continuous at the nodes of Cy,

v = 0 at the boundary nodes}.

Because of the above assumptions, in particular (4.8), we see that Sy, C H}(£2), that
is, Sy, is conforming. The Sp-interpolant of u is defined by

dpu € Sh,
(4.12)
(dpu)(P) =u(P) V nodes P of Cy,.

Because of our choice of shape functions, dpu is a good approximation to u.

In Fig. 4.3 we show a typical part of the mesh on 2. We show the sets (}; and
(; as well as the elements of the mesh. Note that both the {1;’s and the elements
fit the geometry of the fibers. In Fig. 4.4 we show the mesh in a neighborhood of
the boundary of (2. We see in particular the interior and the boundary edges of the
£2,'s. In Fig. 4.5 we show a typical mesh. We do not show the sets {}; and O; but do
show the areas where the coefficient a(z, y) is smooth and where it is rough (the areas
with the fibers). Note that in the area of the fibers we use quadrilaterals elements
while in the area where a(z, y) is smooth we use both quadrilateral and triangular el-
ements. Obviously triangular elements cannot be avoided, but quadrilateral elements
are preferable because they usually lead to higher accuracy (although with the same
rate of convergence).

The approximation property of the spaces S}, is formalized in Theorem 4.1.

THEOREM 4.1. There is a constant C depending on e, 8,0, (E1,m), - - -, (&n2 M )y
ﬂ“'+1""’Q“’a|Qnr+1"‘"a’lﬂn’ the constants C in (4.6) and (4.7) and d, but inde-

pendent of h and u, such that
(4.13) lu — drulh,0 < Chl| fllo,a; 0<h<l.
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Fibers of Composites

Boundary of Q,
————— Boundary of O,
------------- Boundary of the Elements

Fic. 4.3. Typical configuration of the sets i, Oy, and the elements inside (2.

Proof. Consider T € Cp, and let dru be defined by

dru € span {shape functions on T},
(dru}(P) = u(P), for all vertices Pof T

(cf. (4.12)). For i(T) < n' we see that dru is well defined by noting successively that
(dru) (where the prime denctes the transformation from the variables (z,y) to the
variables (&;¢1),Mi(r))) is the

J-E.-ar) dt 1 1 ffi('r) dt
£ sy T 0T T 0T YL ayn
& _dt ' nE—nt ' nd—nl 47 _a
f&} e8! T T T T fﬁ,} ai(T)

-interpolant

span ¢ 1,

of « at the points P, that (dpu)’ (where the tilde denotes the transformation from
the variables (£;¢ry, mi(r)) to the variables

- Sury gt
(4.14) Eury =

= — . ol
b Py i) = Ty = iy
is the span{l,é,;(T),fh(T),fi(T)ﬁi(T)}-interpola.nt of @ at the points P’, that @ €
H 2((‘52@)), from Theorem 2.3, and that the points P’, for P a vertex of T, form

the vertices of a rectangle in @;(T). Note that the variables g}m and 77y have here
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[ ] :
I ,
O YA 0, ;
Ta) ;
g b
= ¥ S
P 1
T. 1 1
Y SR L. l
_.___73_71__.....1: ------ --!-';I' \ rlt :
1 ey W5 EE SR /EER
1
T
1
|
O3 P Oy
73 :
Q | Ya Q,

Boundary of Q
Boundary I of (}
-------- Boundary ¥y, of O

F1G. 4.4. Typical configuration of the sets {}; and O; in the neighborhood of I02.

Boundary of Q
Fibers
------- Elements

=T T

——t—d——
t

}
'

— - —————Ct—-—tft——t——t-———t - — —————-—-—1
T +

T e e el e s Rt Kol
f ; 7 ' ; F ;

Fi1G. 4.5. A complete mesh for Method I'.

been defined differently than in (4.5). This is necessary in order that the set O,
depends only on i(T) and not on T. For i{(T) > n’ + 1 we see that dpu is well defined
by noting successively that d.u (where the tilde denotes the transformation from the
variables (z,y) to the variables £ = F;,i(a:, y),f= Fi; (z,y)) is the span{1, £, #, £7j}-
interpolant of i if T is a quadrilateral and the span{1, E , 7 }-interpolant of 4 if T' is a
triangle, that & € H?(T?), from standard elliptic regularity results because T' C Ui
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and a(x,y) is smooth on Q;(7), and that the points P are the vertices of T°. We note
that these observations show that dyu in (4.12) is well defined.
Now we estimate |u — dru|; 7. First suppose i(T) < n'. Changing variables we

obtain
2
} dz dy

|u“dru|1T—/{
T

B(u — dyu) |*

Nu — dru)
Oz +

dy

A’ — (dru)’) ’2 2
= A et ad &
]J{ a&i(T) | gra E(T)|
Au' — (dru)’) l } Oz, y)
+‘— grad nymy|” ¢ s——————dymdnyr
a?1(11") | ( )‘ a(fi(T),m(T)) @)

<C {‘3("’ — (dru)) |
.

i)
= — 1
i | @iy

< C(O: .81 61('1*):171 )lu - dTu |1 s

A(u’ — (dru)’) r
1 d i
‘ - d&icrydnicr)

A ~ (dgw))|?
i)

o — (dga) |
0Ty

+ aym)

} A€y diier)

where dTu = (dpu) denotes the span {1, E, ) (s E,_(T)T’,_(T) }interpolant of &' on
T". Here 5,(T), 7i(r) are as defined in (4.14). Thus by standard approximation results
for bilinear functions (cf. Thm. 3.1.4 in {7]) we have

lu — dyuji,r < ChIF|, 4,
and hence, for 1 < j <n/,

(4152) Y fJu—drulir <CR® > |2 gc'hzlﬁ’(g,@jzc*hzlul%,oj,

2,7
i(T)=§ i(T)=j
where C = Cla, 8,0,(&1,m) ..., (€nr, M ). Now consider i(T) > »’ + 1. Using (4.6)

and {4.7) and the usual proof of approximation results {cf. proof of Thm. 4.3.4 in [7]),
we obtain

lu — druli,r < Ch{luli,r + |ul2,T)

and hence, for n' +1 < j < mn,

(4.15b) 3 lu—drulir <CR? Y lulis < CREull3 o,
i(T)=j i(T)=j
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For any T, (dpu){, = dru, and thus from (4.15a,b)} we have
T

|w — dh“l%,n = ng |u — dfl‘uﬁ,fp = > ¥ |u- dT“[Lf,T + X > lu— dT“rf,T
h

1<5<n i(T)=j n'41<i<n i(T)=j

gcm( T e+ ¥ fM&q)v

1£j<n’ n'+l<j<n
(4.16)
where C' = C(a, 8, (£1,m), - - -, (En/, Mar ). From Theorem 2.3 we have
(4.17) > lulio, <Clfl3a,

1<5<n’

where C' = C{a,8,0,{61,m),. .-, (Enr, ), d). Because afx,y) is smooth on §2; for
j = n'+1, from standard elliptic regularity results we have

(4.18) > lul3e, <ClfI3 e
n'+1<j<n
where C = C(§y 41, .. .,Q,,,a,|n T .,a|n .d). As a direct consequence of (4.16)—

(4.18) we get (4.13), as desired. a
Qur finite element approximation u; to u is now defined by

up € 8y,

(4.19)

Blup,v) = [ fvde ¥V veE S
o}

Because we are using S for both the test and trial space, stability is immediate.
Approximability has been established in Theorem 4.1. We thus have the following.
THEOREM 4.2. Suppose Q, (§1,m), ..., (Eny M}, ', a(z, y) satisfy the assumpiions
in the first part of this subsection. Suppose u is the solution of (1.1) and uy, is the so-
lution of (4.19). Then there is a constant C = C{a, 8,0, (€1,m), -, Enry e )y Qe 1,
o 8mala,, .0, d) such that

(4.20) lu—ulgo <Chlfloa ¥V fEIX®), 0<h<L

4.2. Method IIT. Consider the boundary value problem {1.1) and suppose
({0, &, m) 12, {(Q, & 1) Y @, 1), and {O;}7%; are as described in Subsec-
tion 4.1. For 0 < h < 1let Cp = {T} be a triangulation of Q by ordinary triangles
together with curvilinear triangles that fit the curved part of 81, all of diameter < h.
For any T € Cp let T* be the ordinary triangle with the same vertices as T. Then
C; = {I'*} is a triangulation of 1 by ordinary triangles, but

U T = U ™
TeC, TeCy

is a polygonal approximation to £2 and not an exact fit of 2. We assume all T*
have diameter < h and that {C}}o<n<1 satisfies the minimal angle condition {3.44)
and the quasi-uniform condition (3.45). Let {P; = (z;,y;)};2; be the nodes of Cy
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and let v»; denote the piecewise linear basis function corresponding to F; (and the
triangulation C5). If T is curvilinear, then by restricting the domain of definition of
1 or by extending 7; as a linear function we can assume 1; is linear on T, and hence
that 4; is continuous on €2 and linear on each T'. Let

S=UTrT

TeC,
P;eT

be the finite element star associated with P;. Now it is easily seen that if hp is
sufficiently small, then for 0 < h < hg, any §; will lie in some O; : S; C Oy(;),1 <
i(§} < n. Let S;i(j)' C Eﬁm be the image of S; N Q under the mapping (ﬁi(j),m(j)),
let R;(j )" be the smallest rectangle with sides parallel to the axes containing S’;(j )’,
and let R;(j ) be the preimagle ~of R;(j Y under (€ig)» n,-(]l-)?. R;-(j Y ¢ 6;(,-, because O;(j)
is a rectangle, and hence R;(J ) lies in Oi(jy- Define J;(“T ) to be three specific vertices

of R;(j ), including all vertices that lie on 9€2.
Next we define our space of approximating functions. For j = 1,...,my let

[ span {1,/;3- (@ y), %;(=9) J, ﬁ;:fw’y) a( Vi@ 0)bm(@,9) - "flh]}
ifl<i=i(j) <7,

span {'ﬂbj(my y)? "abj(ms y)(a: - xj)y 1/}.?'(3:: y)(y - y_?)}

ifn'+1<i=i(j)<n and O()00Q=2,
span {5 (2, y), ¥; (=, )[&i(, ¥) — &), ¥i (@ vz, ) — 10, ]}
ifn'+1<i=i(f)<n and 0 )00# 2.
(4.21)

The third line in this definition has been stated for the case in which the preimages
of the points (&5, 04, ), (€3, n4,) lie on HQ. In other situations we would modify the
definition in an obvious way. Then for the space of approximating functions we choose

mp
(4.22) Sp = v:ﬂ—ﬂR:v:Zvj,vjeV},v:Oonaﬂ

j=1

Our finite element approximation uy to u is now defined by

Uy € Sh,
(4.23)

Blun,v} = [, fv dedy YwveSs.

Because we are using the space S, for both the test and the trial space, stability
is immediate. To study the convergence of the method (4.23) we need to prove an
approximation result for the spaces {Sk}o<n<1- This is done by combining the ideas
of Subsections 3.3 and 4.1.
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Let dz(i)u be defined by

¢ il ﬂi(z,y) dt
d;f‘;l)u € span 1:/ 7171:(3:1 y) - n!l]!‘ lf 1 S 1= 1(]) S n!)
&h, ai(t)

span{l,z —z;,y—y;} fn' +1<i=i(j)<n

and €, No0N =2,

span {1,&(z,y) — &§,, mi(z, v} —nd, }

{ ifn'+1<i=i(j)<n and ;NN #£@.
| (@Du)(P)=u(P) YPe Y

(4.24)
The function d;(i)u is a good approximation to » on S;, as made precise in the

1

following theorem.
THEOREM 4.3. There i3 a constant C = C(a, 8, (€é1,71)y. .., (n, ) such that

’ o (hR;U))z

Ul (), F1<iG)<n,
(PR«_m)

a4 2
(425) fu—difuls, <8 (b
C’—k“"”z,R;UL if ' +1<i(F) <,

(pR;(j))

fori=1,...,mp, k=01

We omit the proof of this result because it is similar to that of Theorem 3.8.

The approximability result for {S}o<n<n, is given in Theorem 4.4.

THEOREM 4.4. There ig o constant C = Cle, 8,v,0,(E,m), - - ., (Eny1n)) such
that

(4.26) u—Y yddu  <Ch (E Lo + Ilullz,oi) :
j=1 =1

1.0 i=n'+1

We omit the proof of this result because it is similar to that of Theorem 3.9.

Finally as a consequence of (4.26), Theorem 2.3, and standard elliptic regularity
results we have Theorem 4.5.

THEOREM 4.5. Suppose §,(£1,m1),...,{&, M), 1, and a{z,y) satisfy the as-
sumptions in the first part of this subsection. Suppose u is the solution of (1.1) and uy
is the solution of (4.23). Then there is a constant C depending on o, 8, v, 0, (&5,m), - - -
(ns M)y g1y Onsa L -0 0 e, and d such that

(4.27) lee — upllie < Chliflloa Yfe L), 0<h<h.
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4.3. Comments on Method I' and III'. The differences and similarities of
Methods I’ and IIT" are similar to those of Methods I and III, which are discussed in
§3.4, We note that with Method I’ we have to fit the elements to the geometry of the
fibers of the composite, as seen in Fig. 4.5. This is not necessary in the case of Method
ITI', and this freedom could be utilized in many situations. For example, suppose the
coefficient is changing rapidly but not abruptly along a line. Then Method I’ could
be used, leading to an enrichment of the usual finite element space by special shape
functions in the neighborhood of the line,

Implementational considerations and computational studies of Methods I, II, III,
I', and IV will be presented in a forthcoming paper.

Acknowledgment. The authors thank Professor L. C. Evans for calling the
theorem of S. N. Bernstein used in §2 to their attention.
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