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SPECIAL FINITE ELEMENT METHODS FOR A CLASS OF SECOND
ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS*

IVO BABUKAt, GABRIEL CALOZt, AND JOHN E. OSBORN

Abstract. In this paper the approximate solution of a class of second order elliptic equations
with rough coefficients is considered. Problems of the type considered arise in the analysis of unidi-
rectional composites, where the coefficients represent the properties of the material. Several methods
for this class of problems are presented, and it is shown that they have the same accuracy as usual
methods have for problems with smooth coefficients. The methods are referred to as special finite
element methods because they are of finite element type but employ special shape functions, chosen
to accurately model the unknown solution.

Key words, special finite elements, rough coefficients
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1. Introduction. In this paper we consider the approximate solution of a class of
second order, two-dimensionM elliptic boundary value problems with rough or highly
oscillating coefficients. We apply an approach proposed by Babuka and Osborn [5]
for the approximate solution of problems with rough input data. This approach was
applied to one-dimensional problems in Babuka and Osborn [4]. Specifically, we
consider boundary value problems of the form

ILu(x’y)=- OxO (a(x’ y) -u(x, y)) yO (a(x, y)---u(x, y))=f(x,y)V(x,y)
0 e

(1.1)
where f is a bounded domain in 11, f is a function in L(f), and where he function
E L(f) satisfies

0 < < y) < < o y) e

where a and/ are constants. Throughout most of the paper we also assume that
a(x, y) locally varies sharply in at most one direction, a requirement on the coefficient
a that will be made precise later (see Remarks 2.1 and 4.1); such coefficients are also
called (curvilinear or straight line) unidirectional. If the coefficient a is rough, then
the solution u to (1.1) will also be rough; to be specific, u will not in general be in
H2() and may not be in HI+(f) for any e > 0.

Problems of this type arise in many applications; we are especially concerned with
applications to unidirectional composite materials (briefly, composites). In these ap-
plications the coefficient a(x, y) represents the properties of the material and changes
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946 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

abruptly. We are also interested in problems in which a(x, y) changes smoothly but
rapidly. We take the liberty of referring to both types of problems as composites. In
Figs. 1.1-1.3 we show some typical configurations for unidirectional composites. In
these figures the coefficient is constant or is changing slowly along the lines or curves
and is changing sharply in the transverse direction; the

FIG. 1.1. A straight line unidirectional composite.

FI(. 1.2. A tubular (curvilinear unidirectional) composite.

absence of lines in a portion of the material indicates a constant or a slowly varying
coefficient. We can interpret the lines as fibers in the composite. This interpretation
is, of course, symbolic for problems in which a(x, y) changes smoothly but rapidly.

Figure 1.1 shows a straight line unidirectional composite or coefficient, and Fig.
1.2 shows the cross-section of a tubular composite. Figs. 1.3a,b show reinforced panels.
The area A in Fig. 1.3b indicates a region in which a(x, y) is smoothly becoming a
constant or a smooth function. We refer to the materials or the coefficients in Figs.
1.2-1.3 as curvilinear unidirectional. We note that certain interface problems can be
naturally treated as problems of composites. With this approach it is not necessary
to fit the interface with the finite elements, as is done with the standard approach.
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 947

Area A

(a) (b)

FIG. 1.3. Rein]orced panel.

A finite element method is obtained by restricting the weak formulation of prob-
lem (1.1),

e
(1

B(u, v)_ [.3)
a gr_ad u. gr_ad vdxdy--fvdxdy VveH(2),

to finite dimensional trial and test spaces. The outline of the approach given in [5] is
as follows:

(1) Characterize the space of solutions corresponding to the space of right-hand
sides (in our case we suppose f E L2(2)). This will involve a regularity result. Al-
though regularity results are well known for elliptic problems with smooth coefficients,
they are not available in a direct form for our problem. Such results are discussed
in 2.

(2) Select trial spaces that have good approximation properties. The approxi-
mation properties of the trial functions or shape functions are directly tied to the
regularity of the solution. For example, if the solution u of (1.1) is not in H2(12),
then it is well known that the usual finite element method based on piecewise linear
approximating functions produces inaccurate results. The problem of selecting opti-
mal trial functions is not simple; in practice, one would like to find a trial space that
performs almost as well as the optimal one but that can be reasonably implemented.
We use the phrase special finite element methods to denote methods with this type
of special shape functions.

(3) Select a test space so as to ensure the inf-sup (or stability) condition is satisfied
and so that the resulting finite element method can be reasonably implemented.

We use this approach to design methods of finite element type that will yield,
roughly speaking, the same accuracy as the usual finite element method when a is
smooth, but strikingly improved accuracy when a is rough.

The organization of the paper is as follows. In 2 we present the regularity results
needed for the problems we are dealing with. Then we propose and analyze several
methods to solve problem (1.1) in the special case in which 20 (0, 1) (0, 1)
and a(x, y) a(x) is a function of x only. This study is carried out in 3, where we
propose three distinct approximation methods. A function a(x, y) a(x) of x only
is an example of a function that locally varies sharply in at most one direction; in
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948 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

fact, such an a(x, y) globally varies sharply in at most one direction. The coefficient
a(x, y) can also be referred to as straight line unidirectional (see Fig. 1.1). In 4 we
present a further development of two of the methods from 3 to treat problems of the
type depicted in Figs. 1.2 and 1.3 with curvilinear unidirectional coefficients.

As noted above the approach presented in this paper is thoroughly studied in
the one-dimensional case in [4]. Techniques similar to special elements were used in
Ciarlet, Natterer, and Varga [8] and in Crouzeix and Thomas [9] to handle degenerate
one-dimensional elliptic problems. We also mention the recent work of Moussaoui and
Ziani [15], which deals with the same kind of problems with a method similar to our
Method I, presented in 3.1. Finally we mention the papers [3], [16], [7], which are
related to our approach.

Throughout the paper, we use the L2(fl)-based Sobolev spaces Hk(f), consisting
of functions with partial derivatives of order less than or equal to k in L2(fl). These
spaces are equipped with the norms and seminorms

We also use the spaces Hk() for fractional k. H() consists of those functions in
Ul() that vanish on 0. We also use the space U-l() [H()]. Throughout,

denotes a generic constant. When we say there exists C C((, ), we mean that
depends on the coefficient a(x, y) only through its upper and lower bounds and
(cf. (1.2)).

2. Regularity results. It is clear that problem (1.1) has a unique (weak) solu-
tion in H(f/); compare (1.3). This is an immediate consequence of the Lax-Milgram
theorem. Furthermore,

But if a(x, y) is rough, then u may not be in HTM(fl) for any e > 0, and therefore we
cannot expect any reasonable rate of convergence for the usual finite element method.
Nevertheless, as a consequence of the assumption that a(x, y) is unidirectional, the
solution u does satisfy a regularity property that can be employed in the derivation
of an approximation method for (1.1) with a good rate of convergence, even though
a(x, y) is rough.

It is the purpose of this section to prove such regularity results, first for the model
problem consisting of (1.1) with fl0 (0, 1) (0, 1) and the coefficient a(x,y)
satisfying a(x, y) a(x), that is, with a straight line unidirectional coefficient (cf.
Fig. 1.1), and then for the more general problem with a curvilinear unidirectional
coefficient (cf. Figs. 1.2-1.3). Our main tool is a theorem of Bernstein [6], [13, 3.17]
for elliptic equations in nondivergence form, which we now state.

Consider the problem

Ou Ou
--all(X, y)x2 2a12(x, y) OxOy
u 0 on 0fl,

2U
a22 (x, y)y2 f in fl,D
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 949

where f is a bounded convex domain in ]R2 with a Lipschitz and piecewise C2 bound-
ary 0f and where the functions aij E L() satisfy

2 2 2

i=1 i,j=l i=1

with a21 a12, where v and # are positive constants. Note that the equation in (2.1)
is in nondivergence form.

THEOREM 2.1 (BERNSTEIN). For each f L2(ft), problem (2.1) has a unique
solution u e H2(ft) H0(t). Furthermore, there is a constant C(v,#), depending on
and # but independent of f, such that

[lul[2, c(, )llfllo,.

Our hypothesis on f is not identical to the one in [13]. To prove that (2.3) is still
valid for such a domain, one can use the a priori estimates given in [11, 3.1].

The first application of Bernstein’s Theorem will give a regularity result for prob-
lem (1.1) when ft ft0 and a(x,y) a(x). Corresponding to problem (1.1), with
this assumption, we define the space

(2.4) HL(ft) {u e Hl(f) a(x)OU-x’-yOU e H (f) }
with the norm

2 2 2IIllL,a -IIlll,a +

where

U]L,f a
2U
OxOy

2 2) dx dy.

THEOREM 2.2. Suppose f l’to and a(x, y) a(x). Then.for each f L2(ft) the
solution u of (1.1) is in H(ft)f3HL(ft). Furthermore, there is a constant C C(a, ),
depending on and but independent of f, such that

(2.6) IlulIL, C(,)llY’llo,.

Proof. Let u be the unique solution to (1.1) in H(ft). We introduce the change
of variables or mapping

(2.7) (x) x ds

(), (u) u

and the notation

(e.8) ((), 9()) u(, u), (, u) e a.
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950 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

The mapping (2.7) maps the domain onto fi (0, f01 a-)48 x (0, 1). We see that

E U2() if and only if u E Hi(D) a- ou U- (fl), which is equivalent to u

UL(). We also note that the weak formulation (1.3) of (1.1) is transformed into

(2.9)

The system (2.9) is simply the variational formulation of

(2.10)
02 202-Ok----if- -=5f

’a=O onOfi.

Note that while the equation in (1.1) is in divergence form, the equation in (2.10) is
in nondivergence (as well as in divergence) form. As a consequence of Theorem 2.1,
(2.10) is uniquely solvable in H(() 3 H2(() and

(2.11) 11 112, -<  )lla]llo, .
Because (2.10) is uniquely solvable in H(), we conclude that , defined in
(2.8), which satisfies (2.9), coincides with the solution of (2.10) and hence lies in
H() S2() and satisfies (2.11). Thus, u H() HL(), which is the first
conclusion in the theorem. If we change variables in the estimate (2.11) to return to
the original variables, we obtain

Ilull 2 u2dx dy + + dx dy

+

< I1 11

_<m (, )C2(, Z)lla]ll 2o, 

which is (2.6).
heorem 2.2w proved by making a global change of variables and then applying

the Bernsgein result. The global change of variables exists because (,) globally
varies sharply in one direction: (,) (). We now prove a second result in which
we sume he existence of only a local change of variables (el. igs. 1.2-1.a).
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 951

Let c fl be open and assume that we have a system of orthogonal curvilinear
coordinates (, y) defined on . More precisely, regarding and (, y) we assume

(i) the functions , y are defined on and are twice continuously differentiable,
(ii) (, y)" - ’ is one-to-one and onto,
(iii) o(,n! > 0 ,

o(z,y) - > on

(iv) grgd . gr_ad r/=OinE,

(v) is a rectangle in , y, that is, ’= (,) (?, y), and, in which ce all edges of are called
interior edges

(vi) 0fl or

the union of one or more edges of E, in which ce

these edges are called boundy edges and the
remaining edges are called interior edges.

The union of the interior edges is denoted by E. We suppose further that

(2.12) a(x, y) a’() V(x, y) e ,
where we use the notation, for y function w defined in E,

e

See Figs. 2.1a,b for typical configurations.

(a) (b)

FIG. 2.1.

THEOREM 2.3. Let u be the solution in H() of (1.1), where we assume that f E
L2() and that a(x,y) satisfies assumptions (1.2) and (2.12), where , (,) satisfies
conditions (i)-(vi) above. Let 0 c be open and satisfy 0 cc F if N O
and O0 NO c O if O , and let 0 be the image of 0 under the mapping
(, ?) (cf. Figs. 2.1a,b). Then there is a constant C C(a, ,,, d) depending on
a,,,, and d but independent of f, such that

1 (2U! 2] dd?)1/2D
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952 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

where

d
dist(O, E)
1, ifE . ifE ,

Proof. Clearly u (more precisely, ul satisfies

a glad u. glad v dxdy= fv dxdy w e go(S).

Introducing the change of variables (, r/) in (2.14) we get

01 grN +NN N 1 0(,)
(z.15)

o(,
Now we introduce a second change of variables,

(2.16) a’(t)’

where is the -coordinate of the left edge of E. We use the notation

’((, r]), (, r)) w’(, /), (, ) e E’, for any function w’ on E’

and

image of E under the mapping (, fi).

Applying this change of variables to (2.15) we get

(2.17) 5100 + 01 0(,,)
where

o(.u)(e.8) a(.) d ]0(..) (’ n) d n0(. U)
0(,.)"

To apply Theorem 2.1, we need to introduce Dirichlet boundary conditions. From
condition (vi) we know that any edge of E is either an interior edge ora boundary
edge. Then, through the correspondence determined by the mappings (, r/) and (, ),
we refer to the interior and boundary edges of E’ and ’. Now let q’ E C(E’)_ with
q’(, ) 0 for (, ) near the interior edges of ’. Then for ’ e H(’), ’’ e
H](’) and we can replace ’ by ’’ in (2.17) to get

+ 0]
+ a2N ,0’, ]’’a’(:)’0(, )
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 953

or

(2.191

where

0’

Writing w-=, from (2.19) we get

( -)_, o’g’ div, a1-, -
Ow(2.21)

al--w e Ho (’) because q’ 0 near the interior edges of ’. Because fi’ is in H (’), the
functions , /are C2, and 5’ 5’(), we see that F is in L2(’). The system (2.211
is simply the variational formulation of

F in ’,

The equation in (2.22) can be formally written as

Ow ha_ Ow 0 Ow
(2"23/ - a, Oa’ Ow

OO OO = G.

Denote by W the unique solution in H2(’) V H(’) of

02W a’2a 02W
(2.24) 5i 02 0O2 G,

which exists by Theorem 2.1 and which satisfies

(2.25)

Now w E H(’) solves the same problem formally. We want to show that w W
and hence that w E U2() and satisfies (2:25). Writing (2.24) in divergence form we
obtain

OW a’a’OW Oa’ OW a, Oa’ OW(2.26) =-5 02 02 0 0 0 0

=F4
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954 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

/
(2.30) Z- T (
which can be formally written as

Letting U W- w and using (2.22) and (2.26) we see that

/ 0(a0_) _a,0(a0v_) oa’ou a,oa’ou ,,
(2.27) -- 0 0 0 0

in

U 0 on 0’,

where we understand the equation in the weak sense. It will suffice to show that
U-O.

Let T" H-l(’) H(’) be the solution operator corresponding to the problem
(2.22), that is, let TF w. Then from (2.27) we get

( 0al ou oa’ ou)(2.28) V T O O
5’2

O00l =- AU.

Because T: H-l(’) - H(’) is bounded and H(’) is compactly contained in
H-l(’), we see that A: H(’) --. H() is compact. Suppose now that V # 0.
Then from (2.28) we see that 1 is an eigenvalue of A. Hence, 1 is an eigenvalue of A*;
let V be an associated eigenfunction.

We can choose V’ e g2(’) CI H(’)so that ]iV- Y’lJl,f:, < ]lYJll,f:,. Then
(V, V)HI(,) # 0 and from the Fredholm alternative we see that the problem

(2.29) (I- A)Z Y’
has no solution in H(’). Recalling the definition of A we see that equation (2.29)
can be written

Oa’ OZ a, Oa’ OZ v’

or

_,oz_a,a al a--hi
0- 002 0 0 ] 00 )

But Theorem 2.1 shows that this equation h a solution Z in g2(’) H(’).
It is immediate that this Z solves (2.30) and hence solves (2.29), a contradiction.
Therefore we conclude that U 0. We have thus shown that w W and hence that
W e H2(’) and

(.’) I111,, 5 c(., , , v)lll0,,.
Now the function ’ can be chosen a cutoff function satising ’= 1 on 0’,

ID’l C(d)-1, and lD2’] C(d)-2, where C is some positive constant, and

0=
dist (0’,/’)

( 1 if E . if/’ ,D
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 955

Then from the expression for G in (2.23) and from (2.20) and (2.18) we have

IlCllo,, < C(,,, )(d’)-2ilfllo,n.

Thus from (2.25’) we see that

(2.31) [[2’[[2,c), _< [Iwt[2,/ <_ C(a,/, , /, d’)]lfllo,n.
Now changing from , bck to , in (2.31) we obtain

which yields (2.13) because C1 (a, , , y)’ d C2(a, Z, , Y)d. B
Remark 2.1. Equation (2.12), with (, y) and satising the conditions (i)-(vi),

is bis for the precise meaning of the phre "a locally vies shply in at most one
direction," which is fully formulated in 4.1 (see Remk 4.1).

Remark 2.2. If the mapping function + iy is analic, then the above analysis
is simplified because in this ce the functions al and a2 in (2.18) are equal to 1.

Remark 2.3. We can define the local analogue of the space HL() defined in
(2.5). With , (, y), and O in Theorem 2.3,

gL(O) {u u’ e g (0’) a’ Ou’ Ou’ He (v’)}0’0
with the norm

where

I111 = = u =- a + a

In terms of the seminorm lUlL,O, (2.13) can be stated as

Remark 2.4. Theorems 2.2 and 2.3 can be easily generalized to cover coefficients
a(x, y) of the form al(x)a2(y) and al()a2(r/), respectively, and coefficients a(x, y)
that are rough in x but smooth in y and a((, r/) that are rough in ( but smooth in ,
respectively.

3. Special methods for problems with straight line unidirectional co-
efficients. In this section we propose and analyze methods on the basis of special
elements to solve the model problem

I u(x,LU(X’y)Y)==-O V(x,OXO (a(x)ff_u(x,y))y)
E Of,

_yO (a(x) yOU(x,y))=f(x,y) V(x,y)

(3.1)
where f f0 (0, 1) x (0, 1), f L2(f), and a L() is a function of x only
nd satisfies (1.2). This is problem (1.1) with a(x,y) a straight line unidirectional
coefficient. We present three approximation methods, prove they have the optimal
rate of convergence, and discuss their merits. Our results are stated in terms of the
constants ( and in (1.2).
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956 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

3.1. Approximation Method I. For 0 < h < 1, let Ch be a triangulation of
by (closed) curvilinear triangles T of diameter < h, where by a curvilinear triangle

T C we mean the preimage of an ordinary triangle_T C under the mapping (2.7).
Corresponding to (h we have a triangulation h of by usual triangles. We assume
that {h}0<h<l satisfies a minimal angle condition,

(3.2) h/p < a V T E Ch

where for any bounded set S c R2,

V0<h < 1,

(3.3) hs diameter of S

and

Ps diameter of the largest disk contained in S.

With (h we associate the space of approximating (or shape) functions

Sh {v L2() VlT span{1 fo dt
a(--, Y} V T e Oh,

v is continuous at the nodes of (h,

v 0 at the boundary nodes}.

As a consequence of our choice for the curvilinear triangles T we see that Sh C H(),
that is, Sh is conforming. This is easily seen by noting that the functions 1, f dt--, Y
are transformed to 1,&, ) by (2.7). Consequently, Jh =-- { "v Sh} ( is defined
in (2.8)), the image of Sh under the mapping (2.7), is the usual space of continuous
piecewise linear approximating functions with respect to h, and Sh is conforming
because h is.

Our finite element approximation Uh to u is now defined by

UhSh

B(uh, v) f fv dx dy VvESh,

where B is defined in (1.3). The. function Uh is just the Ritz approximation to u
determined by the variational formulation (1.3), in the case (3.1), and the space
Sh defined in (3.5). Because it is easily seen that h is the Ritz approximation to fi
determined by the variational formulation (2.9) and the space Sh, we could, or course,
carry out the computation and the analysis on the transformed domain . We shall,
however, study the approximation on the original domain 2 because this approach
better illuminates the more general case of a curvilinear unidirectional coefficient
studied in 4.

It is immediate that B is a bounded bilinear form on H()>(H(). Furthermore,
the stability condition (cf. [1]) holds, that is, we have the following.

THEOREM 3.1. There exists a constant (() > O, independent of h such that for
allO<h < 1,

(3.7) inf sup IB(v, w)l > (o).
UESl,h YES2, h
Ilvlll,= Ilwll.,a=l
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 957

Proof. Because B(v, w) is symmetric it is sufficient to prove that B is coercive,
that is, that

IB(v,v)l >_ 5(a)llvl12, Vv e Sh, 0 < h <_ 1.

This is immediate.
Approximability here involves the approximation of the solution u by a linear

combination of the shape functions 1, f dta-, Y in terms of which Sh is defined. Let
the points P1, P2, P3 e be the vertices of T and let/51,/52,/3 be the vertices of
(cf. Fig. 3.1). Because the functions 1, f0 ,y are transformed to 1,2, ) by (2.7),
we see that the interpolation problem: Given numbers wl, w2, w3, find

x dt
+ +

satisfying w(Pi) wi, i 1,2,3, is uniquely solvable.

(o,1) (1,1)

P3
(o,1)

Pa

pP2
(0,0) (1,0) x (0,0)

FIG. 3.1.

Supp_ose u~ E HL(T). Then fie H2(), and hence fi has well-defined point values for
any P T. Thus u has well-defined point values for any P 6 T, and we define the
span {1, f dt y}-interpolant of u on T bya-(g’

dt
dTu + (t) + /y’ dTu(Pi) u(Pi).

We derive now an estimate for the difference u- dTu. [3

THEOREM 3.2. There is a constant C C((, ), depending on (, but indepen-
dent of T and u, such that

2

(3.9) lu- dTUI1,T < Ch HL-fi-IUlL,T Vue (T),

where h,p are defined in (3.3), (3.4).
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958 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

Proof. Using the transformation (2.7), we have

lu dTul2 IT /10 ( d1,T gr_ad (u dTu)12dx dy - -x
20

( d) dbc(3.10) + a

<m (,) I- dl

where d is the span{l, &, }-interpolant of in the triangle T. Applying the usual
linear interpolation theorem (cf. [7, p. 121]), we get the bound

2

(3.11) I dl,
P

where C is an absolute constant. Inequality (3.9) is a consequence of (3.10), (3.11),
/zand the definition of the seminorm I" I,v, with the constant C(m(, ))

We define now the Sh-interpolant of u HL() by

(3.12)
dhu E Sh,

dhu(P) u(P) for all nodes P

As an easy corollary of Theorem 3.2, we can state our approximability result.
THEOREM 3.3. There is a constant C C(a, , a), depending on a, , and a but

independent of u and h, such that

(3.13) Ilu-dhulll,a ChlulL, V u HL(fl), 0 < h _< 1.

Proof. Because the function u- dhu is in H ([2), from the Poincar inequality
we have

(3 14) Ilu dhull, < C() _, lu dTul2
1,T"

TECh

Combining (3.9), (3.12), and (3.14) we get

4

(3.15) Ilu- dhullx,. < C h lu12 < Ca2m 2

TeC P TeC L,"

It follows immediately from the definition of the mapping (2.7) that

(3.16) h m (,1)hT m (,1) h

Finally, estimate (3.13) follows directly from (3.15) and (3.16).
As a consequence of the stability, approximability, and regularity results, we o

tain an estimate for the error u Uh in the H ()-norm.
THEOREM 3.4. For f L2() let u be the solution to (3.1) and let Uh be the

solution to (3.6), with Sh defined in (3.5). Then there is a constant C C(, , a),
depending on , and a but independent of f and h, such that

(3.17) Ilu- Uhlll, Chllfllo,, 0 < h 1.
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 959

Proof. It follows from Theorem 3.1 and standard results on the approximation of
problems in variational form that

XESh

Combining (2.6), (3.13), and (3.18), and the fact that u e H(fl) implies dhu e Sh,
we have

Ilu uhll , Chllfllo, ,

where C
Theorem 3.4 shows that the method defined by (3.6) is accurate and robust for the

approximation of (3.1), that is, the convergence is of first order in the mesh parameter
h with a constant depending on a and/, but otherwise independent of the coefficient
a(x). Thus the method has the same accuracy as the usual finite element method
based on C, piecewise linear approximating functions for smooth problems.

Remark 3.1. Approximation Method I, as we have presented it, is based on a
triangular mesh. One can also consider rectangular meshes. Thus for 0 < h < 1,
let 17h be a partition of f by rectangles R of diameter <_ h and suppose {h}0<h<_l
satisfies a "minimal angle condition" ((diam R/diam of largest disk contained in R)
< a for all R E h and for all 0 < h < 1). With.Ch we associate the approximating
functions

Sh= vEC()’vl__ span 1, a’ y’ y
a

v=0 on 0f}.
The finite element approximation Uh is defined by (3.6) with this choice for Sh.

Then it is easily seen that the arguments used to prove Theorem 3.4 yield

(3.17’) Ilu Uhlll,f C(o, ,
the same estimate proved for triangular meshes.

Remark 3.2. Method I has an obvious one-dimensional version. This one-dimen-
sional method differs from the standard finite element method based on C, piecewise
linear approximating functions in that the coefficient a(x) enters the finite element
calculations via its element-by-element harmonic averages instead of via its averages
(and the right-hand side is treated in a slightly different manner). It is referred to as
a generalized displacement method (cf. [4]). In the methods presented in this paper,
the coefficient a(x, y) enters the calculations via various element-by-element harmonic
averages and averages, that is, via various element-by-element moments of 1/a(x, y)
and a(x, y).

3.2. Approximation Method II. In Method I we chose trial or shape functions
that closely approximated the unknown solution. We then used the same functions
for test functions, and the stability condition was immediate. To ensure our methods
were conforming, we used curvilinear triangles. In this subsection, we discuss a second
method, employing the triangulation by ordinary triangles shown in Fig. 3.2, the trial
functions used in Method I, and CO piecewise linear test functions. Now the trial
space will be nonconforming, but the test space will be conforming.
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y2

yo /
x x

///
///
///

Xn=1 x

FIG. 3.2.

For h K, n 2, 3,..., let h be the uniform triangulation of F, with nodes
(x, yj) (ih, jh), i, j 0,..., n, shown in Fig. 3.2.

For use in our analysis, we introduce the mesh dependent spaces

(3.19)

with the norms

I1 11 u2 dx dy + lul 21,h 1,h

(3.20)
d dy + /T gr _d ul dxdy.

TECh

It is clear that these spaces are Hilbert spaces.
We define the bilinear form Bh on H() x H() by

(3.21) Bh(u,v)= /T a U. d v dxdy.
TCh

Clearly Bh is bounded on H() H(), with a bound that is independent of h.
Moreover, Bh(u, v) B(u, v) for all u, v e H(). Now we define the trial space S,h
and the test space S2,h

Sl,h (v e L() v[T e span 1, ,y
(3.22) v is continuous at the nodes of

v 0 at the boundary nodes}

and

(3.23) S2,h {v e C() VlT e span{1,x,y},v[on 0}.
We remark that Sl,h

_
H in general, so S,h is nonconforming as mentioned above.

Our finite element approximation Uh to u is then defined by

(3.24) I Uh E S,h,

Bh(Uh, V) fn fV dx V v S2,h.
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 961

Note that the space H(gt) is not well suited for a weak formulation of the exact
problem (3.1). Nevertheless, the error analysis of (3.24) can be carried out in the
usual way. Let us suppose that a stability condition holds for (3.24), that is, there
exists 5 5(c,/3) such that

(3.25) inf sup [Bh(u,v)[_>5(a,)>O V0<h_<l.
UESl,h YES2,h

Because dim Sl,h dim S2,h, (3.25) implies that (3.24) is uniquely solvable. For any
u E Hl()h, we define Phu by

(3.26)
Phu S,h,

Bh(Phu, v) Bh(u, v)

It is clear that Ph is a projection onto Sl,h. This projection is uniformly bounded in
h; in fact by (3.25) and (3.26) we have

sup
vS2,h

IBh(Phu, v)l <-- v e Hi().

For u the solution of (3.1) and Uh the solution of (3.24) we have for any X Sl,h,

[[u uhlll,h [lu Phtlll,h I1( x) Ph(u X)[ll,h

_
[1 -- C(o, )][llt Xlll,h.

Thus we have proved there exists a constant C C(a, #) such that

(3.27) Ilu- Uhlll,h C inf Ilu- ll*,h
xESI,h

(c. [l).
We show now that the stability condition (3.25) holds.
THEOREM 3.5. There is a positive constant 5(c, ) such that

(3.28) inf sup IB(u, v)l > (,) V 0 < h < 1.
uSl,h v.S2,h

Ilulll,h --x IlVlll,-x

let
Proof. Let ah" (0, 1) --. R denote the piecewise harmonic average of a(x), that is,

(3.29) ahlz, hi
dt

i--1

-1

where Ii (xi-1, xi). For any u Si,h, let v S2,h be defined by

v(P) u(P) V nodes P of (:h.

We will verify now the relations:

Ou Ov Ou Ov
(3.30) a_w__ ah _,:,--.Ox’ Oy ycr

Let us first consider a triangle T of the type shown in Fig. 3.3.
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962 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

(Xi-1, Yj) (Xi, Yj)

(xi-1, Yj-1

FXG. 3.3.

On T we have

v(x,y)-u(xi_l,yj_l){1- y-Yj-1) { )h + u(x,_l, yj)
(y Yj-1) -h (x x,-1)

+u(x, y)
x x_

h

and

dt

fX:-l_ a(t)

a(t)

From these two formulae we clearly get

Ou u(xi, y) u(xi_ 1, yj) h Ov Ou Ov
in T.

On the triangles of the type shown in Fig. 3.4 the proof follows the same lines. So the
relations (3.30) are proved. Now using (3.30) and the Poincar6 inequality we have

(3.31)
f( OuO OOv}Bh u v ax -x +aNN dx dy

TECh

> /T Igrgd ldxdy- o1,1 >,_ .llvll,.
TCh

To complete the proof we still have to bound I111, from below in terms of Ilull,.
Using the relation (3.30) we obtain

(3.32) I1,,-- + N ddy< 1,12,.
TECh
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 963

(xi, Yj)

(Xi-l’ Yj-1 (Xi’ Yj-1

FIG. 3.4.

On the kind of triangles T shown in Fig. 3.3 we have

/T ’U’2dxdy /T ’U(X-l’YJ-1) { 1- y yj-1

(3.33)

f
<_ C IT Ivl2dx dy.

On triangles of the type shown in Fig. 3.4 we have the same estimate. Inequalities
(3.32) and (3.33)show that

(3.34) [lul[,h <_ {c + IIvll,,

From (3.31) and (3.34) it follows immediately that (3.28) hods with

{c+ ()
For u E HL(), let dhu be the S,h-interpolant of u, that is, let dhu be defined

(3.35)
dhu Sl,h,

dhu(P) u(P) nodes P of Ch;

dhu is well defined because u is well defined on the nodes and because the images of
the vertices of any T Ch are noncolinear. In the next theorem we derive an estimate
for the interpolation error Ilu- dhulll,h.
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964 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

THEOREM 3.6. There is a constant C C(c, ), depending only on ( and/3 but
independent of u and h, such that

(3.36) Ilu- dhUlll,h < ChlulL, V u E HL(12), 0 < h <_ 1.

Proof. This proof is similar to that of Theorem 3.3. Let u HL(t),T h, and
RT be the smallest rectangle containing T. Let ,/T be the images of T, R under the
mapping (2.7). Then, applying the usual linear interpolation theorem as in (3.11), we
have

h-C Rr i 01.(3.37) ] dul,[ <_ _--:---112,,,

To obtain the result in the original variables we note that

(a.a8) dhul0,kr
r

and (cf. (3.10))

(3.39)

lu dhu[ 2 ldx dy > 1
]u dhu[,ra ---(1)[t dul2 > min c, [u dhu[2,tr.1,RT -By the definition (2.5b) of the seminorm I" IL,Rr, we have

(3.40) lulL,  .

With (3.38)-(3.40), inequality (3.37) yields

h-RT(3.41) lu dhUli,T <_

From (2.7) we have

i O, 1.

(3.42) hr _< max -, 1 hr, Pr -> rain 1, pr.

Finally, (3.36) is a consequence of (3.41) and (3.42).
As a consequence of (3.27), (3.28), (3.36), and (2.6) we obtain the following.
THEOREM 3.7. For f L2()), let u be the solution to (3.1) and let Uh be the

solution to (3.24). Then there is a constant C C((, ) such that

(3.43) Ilu- Uhlll,h

_
Chllfllo,, o < h <_ 1.

Remark 3.3. In Remark 3.1 we briefly outlined Method I for rectangular meshes.
Here we give a rectangular mesh version of Method II. Let

Sl,h V e C() "vlR e span 1, a--’ y’ y

v=Oon Off}
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 965

and

S2,h {v e C(-) vl_ e span {1, x, y, xy} V R e Ch, v 0 on 0f}.
Our finite element approximation Uh is now defined by (3.24) with this choice for Sl,h
and S2,h. In this situation we need a hypothesis on a(x) in order to ensure stability.
Let

x dt

(x)= - and =x-x_l
dt h

and then let

and

We assume

Ai h-1 a dx,

Bi h-1 ia dx,

C h-1 iia dx,
i--1

Di h-1 ia dx.

4AiC (Bi -+- Di)2

>-/>0, Vi, h.

Then (3.28) holds with 5 5(a,/,-) > 0. We therefore obtain

(3.43’) Ilu Uhll,s C(ce, ,"r)hllfllo,a.

We remark that Sl,h is conforming in this rectangular mesh case in contrast with the
triangular mesh case in which S,h is nonconforming.

3.3. Approximation Method III. In Method I we introduced curvilinear tri-
angles to ensure the approximating functions were conforming, whereas in Method
II we used a special triangulation with ordinary triangles obtaining a nonconform-
ing method. In this section we design a conforming method based on an arbitrary
triangulation with ordinary triangles.

For 0 < h _< 1, let Ch be a triangulation of by ordinary triangles of diameter
< h and suppose {h}0<h<l satisfies

h___T <a VTECh,(3.44) PT (minimal angle condition)

and

h
(3.45) <

hT--
(quasi-uniform condition),
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966 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

where hT, PT have been defined in (3.3), (3.4). Let P1,..., P-h be the nodes of
The function Cj denotes the usual piecewise linear basis function associated with the
node Pj (xj, yj), j 1,..., mh, that is, Cj is piecewise linear with respect to (h,

we remark that

(P) =;

mh

2 1.
=1

For each j E {1,..., mh} let

For the space of approximating functions we choose

(a.4) Sh= v.N.v= v,v,v=OonO
j=l

Our finite element approximation uh to is now defined by

/

) u e S,
(3.47)

B(uh, v)= fn fv dx dy V v Sh.

The function Uh is the Ritz approximation to u determined by the variational for-
mulation (1.3) and the space Sh defined in (3.46). To study the convergence of the
approximation (3.47), we turn our attention to an approximation result for {Sh}0<h<l.

First we show that we can approximate u HL() by a linear combination of
1, f dt

(),y-yj on Sj, where for j 1,... ,mh, Sj is the finite element star associated
with the node Pj"

TECh

Let Rj be the smallest rectangle with sides parallel to the axes containing S and
let Jj be three specific vertices of Rj, including all vertices that lie on 0f. For any
u e HL(Rj), we define the span{l, f __,yd yj }-interpolant of u associated with

P by

dt
(3.48) dj,hU / (t) / /(y yj)’ (dj,hu)(P) u(P) V P e Jj.

We will prove the following approximability result.
THEOREM 3.8. There is a constant C C((, ) such that

h2Rlu-d,ul,s < C(,Z)=-[UlL,a, Vi--0,1, j 1,...,mh, u HL(),

(3.49)
0<h<l.
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 967

Proof. Let j e (1,... ,mh} and u e HL() be given. With the node Pj we

associate the finite element star Sj and the rectangle Rj. j and/j are the images
under the mapping (2.7) of S and Rj. Clearly, Rj is also a rectangle. It follows
from (2.7) and (3.48) that dhU is the span(l, , }-interpolant of , that is, d:hU
span(1,,} and dhU(P (P) for all P e J. Thus

h
R 0,

Returning to the original viables in (3.50) (cf. (3.38)-(3.40)), we obtain

h
]UL,n, i 0, 1.(3.51) u dj,hUli,, C(a, fl)

Ph
As in (3.42) we have

(3.52) hhm -’a 1 h, ph min 1, pa.

Finally, (3.49) is a consequence of (3.51) d (3.52).
Before stating an approximation result for {Sh}o<h, we prove a technical

result.
LEMMA 3.1. Let {Ch}0<hl be a family of tangulations satisfying the minimal

angle condition (3.44). Let P1,..., Pmh denote the nodes OfCh and let Sj be the finite
element star associated with Pj. Then we can paition the set {P1,..., Pmh } of nodes
into a finite number of disjoint sets I, It, with t depending on a but independent
of h, such that Pi, P e Ik, i j, implies g( denotes the inteor of S).

Proof. The proof is simple; in ft, we give an algorithm to construct the p-
tition. We similate the triangulation to a graph, the edges being cs. Because
of the minimal angle condition, a node Pi h a limited number of cs PiPit, Qi
{Pi k 1,...,7i} being the neighbors of Pi, with i N 7, where 7 depends
on a but is independent of i and h. We now state the algorithm. To construct
I we do the following. First take P in I1;. then te the node of smallest index
s in {P1,..., Pm}({P1} U Q1), to ensure $1 , , and so on until the set
{P1,..., Pmh}({P } U Q u {P} u Qs u...) is empty. To construct 5 we do the
same before with the subaph of nodes {P,...,Pm}Q. om the minimal an-
gle condition and the construction of I, a node of this subgraph will have at most- 1 arcs. In this way we construct I3, The algorithm will stop aer at most 7
steps.

THEOREM 3.9. There is a constant C C(a, , , a), depending on a, , , a but
independent of u and h, such that

(3.53) u- d,hU <_ ChlulL,a V u E HL(t), 0 < h <_ 1.
j--1 1,

Proof. Let u HL (t) and let I1,..., It be the partition of the nodes of h given
in Lemma 3.1. Then, because supp Cj Sj, we have
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968 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

j--1 1,f j=l 1,f

k=l jIk

k--1

2

E glad (j(u--dj,hU)) dxdy
jEIk

eE E I( grad Cj)(u dj,hu)
k--1 jIk

glad (u dj,hU)12dx dy

_< 2g -’ (l( gr_ad )(u--d,hU)]2

j--1

+1 gr_ad (u d:i,hU)12}dx dy.

We note that with the assumptions (3.44), (3.45), we have the bounds

and gLad Cjl < < <--.
minpT-- minhT h
PjeT PjeT

Thus from (3.54) we get

.t __1{ fs1
u- .idj,hU _< 2e mi Pr u --d:i,hul2dx dy

1,Ft P.T

+ fs glad (u dj,hU) 2dx dy }.
We now use Theorem 3.8 in (3.55) to get

(3.56) 12mh mh hu-EJd:i,hU <_ 2t?C(c,/)
min

j=l
1,f j=l

IL,Rj"

With the assumptions (3.44) and (3.45), the following estimates are obvious:

hn <_ 2 max hT < 2h, Pn > min PT > min hT > h

P@T Pj eT Ps @T O" I0"
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 969

So the inequality (3.56) becomes

(3.57)
mh

j-l

mh

_< c(., . . .)h _. I1,,,.
j=l

mh
It remains to estimate lul,R. We have

j--1

mh

IL,T
j=l TECh

where NT The number of rectangles Rj such that TVR: : . Let us now show that
under the assumptions (3.44) and (3.45) the numbers NT are bounded independently
of h for all T E Ch. Let T E Ch be given. If T N Rj , then Pj lies within the
(closed) disk D of radius (v/ + 1)h centered at the center of T. To estimate the
number of nodes lying inside D, we first estimate the number N of triangles K that
lie inside the disk D of radius (v/ + 2)h. Because from (3.44), (3.45) we get

h pU_< rd- _< r- _< area(K),

we have the estimate

7rh2
4u242 <- Z

KCD
area(K) _< area(D’) w(2 + v/)2h2,

and hence

<_ 4v242(2 + vf)2.

So for NT we have the bound

(3.59) NT <_ 12v242(2 + Xfl)2 V T 6 (h, 0 < h N 1.

Finally combining (3.57)-(3.59) we get

(3.60)
mh

j=l
1,Ft

U
2<- ChUl IL,a,

where C depends on c, f, , a but not on u nor on h, which is the desired result
(a.a).

As with the Approximation Method I, the stability condition is immediate (cf.
Theorem 3.1). In the same way we proved Theorem 3.4, we can prove Theorem 3.10.

THEOREM 3.10. For f L2(f), let u be the solution to (3.1) and let Uh be the
solution to (3.47). Then there is a constant C C(c,, , a) such that

(3.61) Ilu- uhll,n <_ Chllfllo,n, 0 < h <_ 1.

Note that in the proof of Theorem 3.10 we use the fact that u H](ft) implies
mh-j=l jdj,hU e H(ft). This is true because Jj contains any vertices of Rj that lie

on 0f.
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3.4. Comments on Methods I, II, III. We have described three methods for
approximating the solutions of problems of the type depicted on Fig. 1.1. The usual
finite element method is inaccurate for these problems because the solutions may not
be in Hl+(f) for any > 0.

Methods I and II are closely related. The central idea in these methods is to
exploit the existence of a mapping from the general element to the reference element
that transforms the special shape functions into polynomials and the unknown solution
into a smooth function, and thereby obtain a good convergence rate. For singular
corner behavior and homogeneous material, this idea is exploited in [5].

It is advantageous to use rectangular meshes in fl that are aligned with the
direction of the unidirectional composite, as described by a(x, y), because they are
the images of rectangular meshes on ft. The major difference between Methods I and
II is in their treatment of the right-hand side f. Because with Method II, f enters
the computation through integrals of f times the usual piecewise linear test functions
(as opposed to integrals of f times the special test functions (cf. (3.5)), Method II is
preferable when many right-hand sides must be treated. On the other hand, Method
II is less stable than Method I, leading to larger constants in the error estimates (cf.
(3.17), (3.17’), (3.43), (3.43’)). In fact, for rectangular meshes Method II may not
converge for some a’s; see the hypothesis on a(x) in Remark 3.3. We note that for
triangular meshes Method II always converges.

Method III, although similar in its use of good local approximating functions
(e.g., functions satisfying the differential equation), has a rather different character
than Methods I and II. In Method III the alignment of the mesh does not play a
role. Finite element approximating spaces based on shape functions satisfying the
differential equation have been suggested and employed in various contexts. The
main problem in their use is the enforcement of some type of conformity. This can
be done by various hybrid methods, for example see [2], [12]. There are, however,
problems in ensuring the stability of these methods, and some of these problems have
not been satisfactorily resolved. In contrast, Method III has no problems of this type
and is very accurate and robust. For some computational aspects of a similar method
employing harmonic polynomials in a p-version fashion and applied to the solution of
Laplace’s equation see [14].

4. Methods for problems with curvilinear unidirectional coefficients.
The methods presented in 3 cover problems on rectangular domains with coefficients
that globally vary sharply in at most one direction, that is, that are straight line
unidirectional. Here we extend Methods I and III to cover coefficients that locally
vary sharply in at most one direction, that is, that are curvilinear unidirectional, and
to cover domains with curved boundaries. Method I, the extension of Method I, will
be based on quadrilateral and triangular elements and Method III, the extension of
Method III, will be based on triangular elements.

4.1. Method I. Consider the boundary value problem (1.1) and suppose
for 1 _< _< n, (12i,i,r/i) is an open subset of and a coordinate system

satisfying conditions (i)-(vi) in 2 and for n’ 4- 1 _< _< n, where n’ <_ n, (fi,i, rli) is
an open subset of fl and a coordinate system satisfying conditions (i)-(iii), (v), (vi) in
2, that is, (x, y), r/- / r/(x, y) and if (x, y) ranges over f, then (,
ranges over f (,,,) x (?,, /,), where fi, i(x, y), r/i(x, y) satisfy conditions

(i)-(iv), (vi) if i <_ n’ and conditions (i)-(iii), (vi) if _> n’ 4- 1 (let Ei denote the
union of the interior edges of
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 971

* (fi}i=1 covers f in the sense that

(4.1) U=lgti

and

(4.2) Oft U= {int (fi n 0f) in 012};

for 1 _< _< n’, we have

(a.a) u) v u) e

where x xi(, y), y y(, y) is the inverse of the mapping i(x, y), yi(x, y) (hi here
plays the role of a’ in (2.12)), and for n’ + 1 n, a(x, y) is smooth on i.

With {(,,Y)}I satising these sumptions, for each i let O be the result
of pulling each interior edge of (cf. condition (vi) of 2) a distance d toward the
center of i. Then the Oi’s e open sets of the type considered in Theorem 2.3 (i.e.,
O C ,O CC if 0 d 00 0 c 0 if 0 ) and {O}=
satisfies provided d is sufficiently small. Note that d dist(O, E). We
consider d to be fixed.

We note that if (1.1) corresponds to problems of the type depicted in Figs.
1.1-1.3 or to a smooth interfe problem modeled a composite material, then
((, ,, )}1 c be chosen to satis the conditions outlined above.

We also note that these sumptions imply that 0 is a piecewise smooth (C2)
curve with vertices with angul meure a satising 0 < a < r; in pticul h
no reentrant vertices.

Remark 4.1. If our problem satisfies these sumptions we say that a(x, y) locally
vies shply in at most one direction. Such coefficients e, indicated earlier, also
called (curviline) unidirectional.

With , 1,..., n, O,..., On, n, and a(x, y) satising the hypothesis described
above, we now describe the meshes we employ. For 0 < h 1, let h (T} be a
mesh on consisting of curviline (closed) qurilaterals or triangles, and satising
the following properties:

Each T is contained in some O T c Oi(T), 1 i(T) n;
If i(T) < n then T is the image of a rectangle T in under the mapping(T)

x Xi(T) Xi(T)(, ), y Yi(T) Yi(T)(, ), that is,

T { (x, y)" x Xi(T)(, ), y Yi(T)(, ),
2

where

(4.4b) a-1 < ]" "[ <’

where 1 <_ a < cx is independent of the mesh. The mapping (i(T), ?i(T)) maps T
onto T’- (,, ,) x (r,, 1,) and T’ is mapped onto the reference rectangle T
(0, 1) x (0, 1) by the mapping
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972 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

(a.5) hi(T) i(T)
hi(T) Ji(T) hi(T)

dt f dt
hi(T) J hi(T)

Thus the composition of these two mappings maps T onto To T, and the inverse,
FT, of the composition maps TO onto T.

If i(T) _> n’ / 1, then T is the image of

TO Tr if T is a quadrilateral,

( Tt --a reference triangle if T is a triangle

under a mapping FT satisfying FT is invertible, and FT and F are smooth,

IFTII,o,TO <_ Ch, IFTI2,o,TO

_
Ch2, IF=III,o,T

_
Ch-1,

and

[JFT [O,oo,To -- sup
(,)ET

IJFT(, )1 -- Ch2, su, _< -:,
(x,y)eT

IGI,o,Q sup IIDG(t,
(t,8)Q

[IDeG(t, 8)[I(R2,R2 max
"/ R2

II;,11 _<

II. II- the uc]idean vector norm on R,
and

Jr(t, s) Jacobian of G at (t, s).

The constant C in these estimates is independent of the mesh. We easily see that
the mapping FT TO - T defined above for i(T) <_ n’ satisfies parallel assumptions.
Hence we have T FT(T) for all T, and it is convenient to associate the mesh
C {T} with the set of mappings {FT}.

The standard compatibility condition is satisfied. Suppose that T1 and T2 are
quadrilaterals with a common edge g g T1 A T2. See Fig. 4.1; note that we are
using two copies of the reference rectangle T. Assuming that is the image of the
vertical line segment {(, )" - 1, 0 _< _< 1} under both FT1 and FT2, we require
that

(4.8) FT1 (1, ) FT. (1, ), 0 <_ l <-- 1.

If g is the image under FT2 of a different edge of the reference rectangle, we would mod-
ify (4.8) in an obvious manner. Also, if either T1 or T2 is a triangle, the compatibility
condition would be modified in an obvious way.

We point out that our mesh matches the (curved) boundary of t by means of
blending (nonisoparametric) elements.
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 973

FT

(1,1)

x (0,0) (1,0)

(2,1)

To

(2,0)

FIG. 4.1.

Remark 4.2. In the quadrilateral element case, verification of (4.6) and (4.7)
usually proceeds along the following lines. Let T* denote the straight line quadrilateral
with vertices ai, i 1, 2, 3, 4, coinciding with those of T (see Fig. 4.2), let hT diam
T*, PT diam of largest disk contained in T*, and ")’T max(I cos((ai+l--ai).(ai_l-
a)}ll _< i _< 4(mod4)} and assume

a3

a4

a

a2

x a

TO

a2

FIG. 4.2.

hThT

_
h,

_
if, ’T _< " < 1,

PT

where a and -/are independent of the mesh. Let FT denote the bilinear mapping of
To onto T* and write

Fr FT + .
One then makes assumptions on the perturbation (I) that imply (4.6) and (4.7) are
satisfied. This procedure is outlined for isoparametric quadrilateral elements in [7,
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974 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

Exercise 4.3.9]. The parallel procedure for triangular isoparametric finite elements is
carried out in [7, Thm. 4.3.3].

It remains to describe our shape functions. On T E Ch we use the shape functions

(4.9) 1, F,-1 F,-1 F,-1 F,-1
T,1 (x, y), T,2(x, Y) T,I (X, y) T,2(X, y) if T is a quadrilateral

and

(4.9’) 1, F,-1 F,-1
T,1 (x, y), T,2 (X, y) if T is a triangle,

where Fl(x,y)-- (FT-, (x, y) T,2(X,y)), that is, we use the pull-back polynomials

determined by the bilinear sh_ape functions 1, , , in the quadrilateral case and by
the linear shape functions 1, , , in the triangular case. For i(T) < n’ we easily see
that the functions in (4.9) are

(4.10) 1,

Then we let

(4.11)

{v e L ( )’VlT e span of the shape functions on T,

v is continuous at the nodes of (h,

v 0 at the boundary nodes}.

Because of the above assumptions, in particular (4.8), we see that Sh C H(f), that
is, Sh is conforming. The Sh-interpolant of u is defined by

(4.12)
dhu Sh,

(dhu)(P) u(P) nodes P of h.

Because of our choice of shape functions, dhu is a good approximation to u.
In Fig. 4.3 we show a typical part of the mesh on f. We show the sets fi and

Oi as well as the elements of the mesh. Note that both the fi’s and the elements
fit the geometry of the fibers. In Fig. 4.4 we show the mesh in a neighborhood of
the boundary of f. We see in particular the interior and the boundary edges of the
fi’s. In Fig. 4.5 we show a typical mesh. We do not show the sets i and Oi but do
show the areas where the coefficient a(x, y) is smooth and where it is rough (the areas
with the fibers). Note that in the area of the fibers we use quadrilaterals elements
while in the area where a(x, y) is smooth we use both quadrilateral and triangular el-
ements. Obviously triangular elements cannot be avoided, but quadrilateral elements
are preferable because they usually lead to higher accuracy (although with the same
rate of convergence).

The approximation property of the spaces Sh is formalized in Theorem 4.1.
THEOREM 4.1. There is a constant C depending on ,, a, (1, 11), (n’ ln’ ),

 on ta,a C (4.6) and (4.7) d, ind -

pendent of h and u, such that

(4.13) Ilu- dhulll,a <_ Chllfllo,, 0 < h <_ 1.
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\\

Fibers of Composites

Boundary of

Boundary of O

Boundary of the Elements

FIG. 4.3. Typical configuration of the sets fi, Oi, and the elements inside f.

Proof. Consider T E Ch and let dTu be defined by

dTu span {shape functions on T},

(dTu)(P) u(P), for all vertices P of T

(cf. (4.12)). For i(T) < n’ we see that dTu is well defined by noting successively that
(dTu)’ (where the prime denotes the transformation from the variables (x, y) to the
variables (i(T), r/i(T))) is the

i(T) dt

span 1, J" a(r)

[’T dt

J ai(T)

of u’ at the points P’, that (du)’ (where the tilde denotes the transformation from
the variables (i(T), r/i(T)) to the variables

(4.14) 1

is the span{1,(T),(T),i(T)(T)}-interpolant of 2 at the points P, that 2
H2 ~(O(T)), from Theorem 2.a, and that the points /5, for P a vertex of T, form

the vertices of a rectangle in Oi(T). Note that the variables i(T) and i(T) have here
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Boundary of

Boundary F of i
Boundary 7i of O

FIG. 4.4. Typical configuration of the sets i and Oi in the neighborhood

Boundary of 2
Fibers
Elements

.___, ,.-"
.d_l -\

.L_ ....
_" .’", //

_
iI

L--L_.. ’, ,, ", .-....’/ ’,/..-’"

-- .-

i
.I

I --i--FIG. 4.5. A complete mesh for Method 1.
~#been defined differently than in (4.5). This is necessary in order that the set Oi(T)

depends only on i(T) and not on T. For i(T) _> n’ + 1 we see that dTu is well defined
by noting successively that du (where the tilde denotes the transformation from the

F,-I F,-1variables (x,y) to the variables T,I(X,y) - T,2(x,y)) is the span{1,,,}-
interpolant of fi if T is a quadrilateral and the span(l, , }-interpolant of fi if T is a
triangle, that fi G H2(T), from standard elliptic regularity results because T C Oi(T)

D
ow

nl
oa

de
d 

12
/0

4/
25

 to
 1

28
.6

2.
20

8.
15

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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and a(x, y) is smooth on ’]i(T), and that the points/5 are the vertices of T. We note
that these observations show that dhu in (4.12) is well defined.

Now we estimate lu- dTUI1,T. First suppose i(T) < n’. Changing variables we
obtain

O(u dTu)
Ox

2 O(u dTu)
Oy 21 dx dy

2O(u’--(dTu)’) Igr_ad i(T)l 2

O(u’ (dTu)’)12 I O(x Y)
d(T)d(T)O?i(T

gr_ad li(T) [2

O(u’ (dTu)’)12O?i(T) } di(T)d?Ii(T)

O(ft’ (d;u)’) 2 }Oi(T) di(T)di(T)

<__ C((, , i(T), ?i(T))I’ du-’ [1,,,2
where di’ (d;u)’ denotes the span {1, i(T), Oi(T), i(T)Ii(T)}-interpolant of fi’ on
’. Here -(T), Oi(T) are as defined in (4.14). Thus by standard approximation results
for bilinear functions (cf. Thm. 3.1.4 in [7]) we have

lu- dTUI1,T <_ Ch]t’12,,,

and hence, for 1 < j < n’,

(4.15a)

where C C(a,3, a, (1,1)..., (n’,ln’)) Now consider i(T) > n’ + 1. Using (4.6)
and (4.7) and the usual proof of approximation results (cf. proof of Whm. 4.3.4 in [7]),
we obtain

lu dTUll,T <_ Ch(lull,T nt- [Ul2,T

and hence, for n’ + 1 < j < n,

(4.15b) 2,T 2,0j1,T
i(T)--j i(T)--j
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978 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

For any T, (dhu)lT dTu, and thus from (4.15a,b) we have

L,Oj 4c

(4.16)

2,Oj
n’T <_j <_n

where C C(a, fl, (1, ?1),..., (n’, n’). From Theorem 2.3 we have

lu dTU[2,T

(4.17) - 2 2UlL,o < CIIfllO,f
<_j <_n’

where C C(a, , a, (1, rll ), (n’ n’ ), d). Because a(x, y) is smooth on fj for
j > n’ + 1, from standard elliptic regularity results we have

(4.18) Z Ilu1122,o < cIIfll0,f
n’+l<_j<n

a Inn d). As a direct consequence of (4.16)-where C C(fn,+ fn, a f.,+1’
(4.18) we get (4.13),. as desired. D

Our finite element approximation Uh to u is now defined by

(4.19)
Uh6Sh,

B(uh, v) /afvdx V v 6 Sh.

Because we are using Sh for both the test and trial space, stability is immediate.
Approximability has been established in Theorem 4.1. We thus have the following.

THEOREM 4.2. Suppose f, (, h),..., (n, tin), n’, a(x, y) satisfy the assumptions
in the first part of this subsection. Suppose u is the solution of (1.1) and Uh is the so-
lution of (4.19). Then there is a constant C= C(a,,a, (1,1),..., (n’,l]n’),n’+l,
..., f,, a I.,+1,’’’, a I d) such that

(4.20) Ilu- Uhlll,

_
Chllfll0, V f e L2(Ft), 0 < h < 1.

4.2. Method III’. Consider the boundary value problem (1.1) and suppose
n’ n a(x,y) and {Oi}in__ are as described in Subsec-{(’i i ?i)}i=l, {(-i i,?i)}i=n’+l,

tion 4.1. For 0 < h < 1 let Ch {T} be a triangulation of f by ordinary triangles
together with curvilinear triangles that fit the curved part of Of], all of diameter < h.
For any T 6 Ch let T* be the ordinary triangle with the same vertices as T. Then
C {T*} is a triangulation of f by ordinary triangles, but

T*eC T6Ch

is a polygonal approximation to f and not an exact fit of f. We assume all T*
have diameter _< h and that {C}0<h<l satisfies the minimal angle condition (3.44)
and the quasi-uniform condition (3.45). Let {Pj (x.,y.) mh}j= be the nodes of C
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FEMS FOR PROBLEMS WITH ROUGH COEFFICIENTS 979

and let Cj denote the piecewise linear basis function corresponding to Pj (and the
triangulation J). If T is curvilinear, then by restricting the domain of definition of

or by extending as a linear function we can assume Cj is linear on T, and hence
that Cj is continuous on f and linear on each T. Let

sj=UT
TECh

be the finite element star associated with Pj. Now it is easily seen that if h0 is
sufficiently small, then for 0 < h _< h0, any S will lie in some Oi S c Oi(), 1 <_
i(j) <_ n. Let Si(j)’ c Oi() be the image of S Cl f under the mapping (i(), r/i()),
let --R(j)’ be the smallest rectangle with sides parallel to the axes containing --S(j)’,
and let R(j) be the preimage of R(j)’ under (i(j), r(j)). R(j)’ C V(j) because O[()
is a rectangle, and hence R(j) lies in Oi(j). Define J(J) to be three specific vertices

of R(j) including all vertices that lie on Of/.
Next we define our space of approximating functions. For j 1,..., mh let

V# V]()

span (x, y), Cj(x, y)

if I < i i(j) < n’

span {j (x, y), j(x, y)(x xj), j(x, y)(y

ifn’+l<_i:i(j)<_n and iN0f:g,

ifn’+l_<i=i(j)<_n and iN0n7.
(4.21)
The third line in this definition has been stated for the ease in which the preimages
of the points ((,, r/,), (, r/,) lie on 0a. In other situations we would modify the
definition in an obvious way. Then for the space of approximating functions we choose

__rnh one v o
j--1

Our finite element approximation Uh to u is now defined by

(4.23)
B(uh, v) fa fv dx dy VvESh.

Because we are using the space Sh for both the test and the trial space, stability
is immediate. To study the convergence of the method (4.23) we need to prove an
approximation result for the spaces {Sh}0<h_<l. This is done by combining the ideas
of Subsections 3.3 and 4.1.
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980 IVO BABUKA, GABRIEL CALOZ, AND JOHN E. OSBORN

if 1 <_ i i(j) <_ n’,

if n’+ 1 _< i= i(j) < n

span { 1, i(x, y) ,, r/i (x, y) r/, }

ifn+l_<i=i(j)<_n and N0Z.
,h u)(P)= u(P) P J(J).

(4.24)
The function di(J)u

,h is a good approximation to u on Sj, made precise in the
following theorem.

THEOREM 4.3. There is a constant C C(a, fl, (, W), (n, Vn)) such that

C
(hR,(J))

2

ul ,-i. (J),

Ilull ,.

]or j 1,..., m, k O, 1.

if 1 <_ i(j) E n’,

if n’ + 1 <_ i(j) <_ n,

We omit the proof of this result because it is similar to that of Theorem 3.8.
The approximability result for {Sh}O<h<_ho is given in Theorem 4.4.
THEOREM 4.4. There is a constant C C(,/3, u,a, (i,li),..., (n,n)) such

that

(4.26) it )J j,h U

1, i=1 i=n+l

We omit the proof of this result because it is similar to that of Theorem 3.9.
Finally as a consequence of (4.26), Theorem 2.3, and standard elliptic regularity

results we have Theorem 4.5.
THEOREM 4.5. Suppose , (1, ), (n, Yn), n’, and a(x, y) satisfy the as-

sumptions in the first part of this subsection. Suppose u is the solution of (1.1) and Uh
is the solution of (4.23). Then there is a constant C depending on a,/3, , a, (, ?),
(n, yn), Ftn,+l,..., tn, a ]a.,+1,""", a Inn, and d such that

(4.27) Ilu-Uhll,a <_ Chllfllo,a Vle L2(a), 0 < h _< ho.D
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4.3. Comments on Method I and III. The differences and similarities of
Methods I and III are similar to those of Methods I and III, which are discussed in

3.4. We note that with Method I we have to fit the elements to the geometry of the
fibers of the composite, as seen in Fig. 4.5. This is not necessary in the case of Method
III, and this freedom could be utilized in many situations. For example, suppose the
coefficient is changing rapidly but not abruptly along a line. Then Method III could
be used, leading to an enrichment of the usual finite element space by special shape
functions in the neighborhood of the line.

Implementational considerations and computational studies of Methods I, II, III,
I, and III will be presented in a forthcoming paper.

Acknowledgment. The authors thank Professor L. C. Evans for calling the
theorem of S. N. Bernstein used in 2 to their attention.
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