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ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD*

I. BABUSKA AND A. K. AZIZt

Abstract. The finite element procedure consists in finding an approximate solution in the form of
piecewise linear functions, piecewise quadratic, etc. For two-dimensional problems, one of the most
frequently used approaches is to triangulate the domain and find the approximate solution which is
linear, quadratic, etc., in every triangle. A condition which is considered essential is that the angle of
every triangle, independent of its size, should not be small. In this paper it is shown that the minimum
angle condition is not essential. What is essential is the fact that no angle is too close to 180°.

1. Introduction. The finite element method has been widely studied, and it
has become one of the most frequently used procedures for the numerical solution
of partial differential equations. Numerous results have been obtained in recent
years. We mention here [1] and the references quoted there, [2], [3], [4] and the
references cited in these papers.

The finite element method consists in seeking an approximate solution in the
form of piecewise linear functions, piecewise quadratics, etc. In two dimensions,
one of the most commonly used approaches is to triangulate the domain (i.e., to
cover the domain by triangles) and find the approximate solution which is linear,
quadratic, etc., in every triangle. A condition which is considered essential is that
the angle of any triangle, independent of its size, should not be small. This is called
the minimum angle condition, which is required in all studies, e.g., [5], [6], [7], [2,
p. 138] and many other papers. This condition has an analogue in higher
dimensions (see [8]). In some sense this condition is very restrictive, especially
when we seek to approximate functions which change more rapidly in one
direction than in another direction.

The present paper shows that the minimum angle condition is not essential.
What is essential is the fact that no angle is too close to 180°. In other words, the
maximum angle condition is the proper condition in all 2-dimensional cases which
have been considered.

The maximal angle condition in the case of piecewise linear approximation is
referred to by Synge [10, p. 211]; however, it is not elaborated upon in any
subsequent papers directly connected to the finite element method. The method
of Synge appears to be hard to generalize. The approach in this paper is quite
different and obviously may be generalized in many directions.

We shall show that this maximum angle condition is sufficient and also, in
some sense necessary.’
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2. The sufficiency of the maximal angle condition. We shall not present here
an abstract general version. Instead we prove a special theorem in two dimen-
sions, where the underlying basic idea, which is simple, may be clearly presented
without being encumbered by too many mathematical techniques. The generali-
zation to higher dimensions does not present any difficulty.

Let, for0<a =1,

Th(a) = {(xl, X2)|O< X1 < h, O< X < a(h _xl)}
(i.e., T,(«) is a right triangle (see Fig. 2.1)).

X2

A

I

ah

> X,

PN
FiG.2.1
We further let
T(a)=T,(a) forh=1
and
T=T,(a) forh=a=1.
Given Q < R,, we define the usual Sobolev (Hilbert) spaces H'(Q) (I integer) with

(2.1) lulfray= Y [IDPulli.q»
0=g=I
s aB:"‘Bz 2
——ax’flaxgz’ B _(Bl’ BZ), |B(_'§1 Bi’

where B, are integers and ||ul| 2, denotes the usual norm in L,(Q), i.e.,

22) Julf o= | a, dx = dx, d
Q

Now we define
ah
=@ ={ucH(T@), | w0, x) dw =0},
0

and
Tn(@) ={ue H(Ty(a)), u(x}, x5)=0,i=1,2,3},

where (x}, x5),i=1, 2,3, denote the coordinates of the vertices of T}, (a). For
h=a=1, we omit writing the variables @ and h. From well-known Sobolev
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imbedding theorems, we know that B, («a) (resp. 7,(«)) is a proper subspace of
H'(T,(a)) (resp. H*(T,,(a)).
Now we prove the following lemma.

()XI X2

J u® dx
T
Then A*>0.
Proof. If we let H'(T)/P, denote the quotient space modulo the set of
constant functions (see [9, § 1.7, p. 19]), then we have

2 2
(2.4) ||u||§,1(T)/PO§const.J [(ﬂ) +(£Li) ]dx
T

0x, 0x,

(2.3) A%= inf

(see [9, Thm. 1.6]).
Now let us assume that, on the contrary, A = 0. Then there exists a sequence
{u}eE,i=1,2,---,such that |ul.,,=1and

N2 N2
(2.5) J' [(ﬁ“—) () ] dx >0,
T Bxl GX2
Therefore, using (2.4), we have |[u;| 1)/ p,—> 0.

Thus there exists a sequence {p;} of constant functions such that

(2.6) flu; —pi”Hl(T)_)O'

On the other hand, {|u;y'r} is a bounded sequence. Therefore (|pillnt =
Pl is also bounded, and consequently there exist subsequences u; and p;
such that |[u;, — p; ||lw*r)=> 0, p;, > P, with j a constant function. Therefore

lpi; = Pllracr >0,
and thus
"”i; _ﬁ"H’(T)—) 0.

From the imbedding theorem it follows that
1
| 40,509 dza>0.
0

Since u; € E, p = 0. Therefore, ||u; ||z~ 0, which is a contradiction because
Nt llerat cry Z il 2y = 1.

The proof of Lemma 2.1 is complete.

LEMMA 2.2. Let
[, [ ey (2
2.7) B*a)= inf 1< dx1 0X10X, ax3

ueT(a du\? du\?
W [ R N
T(a) 09X, 0X,

, 0<a <.
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Then B(a) = A. (B(«) is positive uniformly with respect to a.)
Proof. Let Q be a mapping of 9 (a) onto J such that

Q(u) = Ul(xy, x,), (x1,x)eT,
where
U(xy, xp) = u(xy, ax;),  (x1, ax;) € T(a)

Then obviously we have

J [(aZU)Z+2a‘2( *U )2+a“‘<32_U)2] dx
ax; 9x:0 ax3
(2.8) Bz(a)szlg r L oX; — X1 _x;a 0% ’
I, [Go) ()
and therefore, since 0 <a =1, we have
|G o) +o o) + (G) T s
i a v
(2 9) Bz(a)z inf T E)x% 0x10X, 0x10X, (*)x;
S [ [Go) e () e |
i a =
T axl axZ

Now letting dU/dx, = w, since U € H*(T), we have w € H'(T) and w € E because
u € 9. Therefore from Lemma 2.1 we obtain

_ U \? [8°U\? - aw\2 [ow\2
2100 o [ (e H(5E) Jax=a | [(22)+(2)]
(2.10) a ] o) T\az) 1= | 1G5 ox,) 19
éa_zAZJ w? dx

T
QU\2
(— dx.
0x,

=a—2A2J

T

In a similar fashion, by interchanging the role of x, and x,, we obtain

U\ [ o°U \? aU\?
1 | 1G) ) Jax=ar | (50) ax
@11 - L\ox2) Toxan) 1Y - \ox,)

Therefore we have

ey LI N

G G e

and the lemma is proved.
In asimilar way as that for Lemma 2.1, the following lemma may be proved.
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ou\? o u \* [(du\?
G (o) <) o
T L\dx] 9x10X; 0x5

LEMMA 2.3. Let

(2.12) A?=inf
ued J u® dx
T
Then
(2.13) A>0.

The following lemma is also easily proved.

LEMMA 2.4. Let
az’u)2 ou \? [d°u\?
o)) 5]
JT(Q) [((‘)xl 6x18x2 ax% x

(2.14) B*(a) = inf ,
e J u? dx
T(x)
O<a=1.
Then
(2.15) B(a)Z A.

(A is positive independently of a).

Let for u e H°(T,,(a)), Ru be a linear function on T}, («) which coincides with
u at the vertices of T,(«). Further let Zu = u — Ru. Z is obviously a mapping of
H*(T,(a)) onto T, (c).

THEOREM 2.1. Let

2
(2.16) Cita)=  inf  Mlircnen
" ue (T | Zullf (1
Then
(2.17) Cua)Zh (A Ph*+ A7) 7V2, 0<h=1

(uniformly with respect to a, 0<a =1).
Proof. (i) We have

8> Zu\2 PZu\? (8*Zu\?
[( ) +2( ) +< ) ]dx HluallFr (tarns

liraen=] |(55) +2() +(55

Th(a)

and therefore

o () w2l ()
Cla)= inf D ax: 3x,0%, 0x5
h =

(218) ue Tn(a) 2 2 '
oo LG () axe ] was
Th(a) x4 X, Thia)

h
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(ii) On the other hand, Lemmas 2.2 and 2.4 yield, for any u € 7, (a),

_ 2 2 2 2 2
(2.19) j u2dx§A—2h4j [(a—”z‘) +2( gu )+(a—'§) ]dx,
Th(a) Th(a) 3)(1 ax16x2 8x2
2\2 2
[(G) + () ]
(')xl ze

2 2 2 2 2 2
e R
Th(a) axl 8x16x2 aX2

(2.20) L

h(a)

and therefore

1 )
—h

(2.21) Ci(a)ém—erA“

At the beginning of this section we introduced the right triangle T),(«). Now
we define a general triangle T),(«, ) such that it is the image of T, («) under the
linear transformation ®,, given by

q)y(xl, x) = (&1, &),
where
& =x11vx, &H=x
(see Fig. 2.2.)

-

ah
oh

L S

X, —
PN h N

FI1G.2.2. |o|<#/2, y=tan w.

The Jacobian of this mapping is given by

_1')’] —1_[1 —'Y]
J—[o 7 “lo 1l

By the use of usual techniques (see, e.g., [2, p. 138] and [6]), we obtain the
following theorem.
THEOREM 2.2. Let
2 _ : ”””if(n(a,y»
(2.22) Cila,y)= inf Tt

we Tty | Z0|le Ty
Then forany h=1,

(2.23) G, y)Zh "Wy),
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where V() is a continuous positive and finite function defined for all —00 <y <0,
(For |y| < yo, we have V(y) Z¥(y,)>0).

Thus far we have considered only the case when one side of the triangle was
along the x;-axis. We observe that since the norms in H '(Q) are invariant with
respect to the rotation of the coordinates, Theorem 2.2 holds also for a triangle in
general position.

Consider a general triangle T as shown in Fig. 2.3,

Fi1G.2.3

and assume that « is the maximum angle, obviously = >« = /3. Further, let h be
the length of the maximimal side of T. Let us associate with any triangle two real
numbers (a, h). Then Theorem 2.2 implies that

(2.24) lu — Rullps (ry =T(a) hllull 2 cry,

where I'(a)((7/3) = a < ) is an increasing finite function.

Let 7 be a triangulation of the entire two-dimensional space R, ;i.e., we cover
R, by triangles which are either disjoint or have a common vertex or a common
side. We associate with every triangulation two parameters « and h, h is the
largest side and « is the largest angle of all the triangles in the given triangulation.
Let V, = H'(R,) be the space of all functions which are linear in every triangle of
our triangulation 7. The following result holds.

THEOREM 2.3.

2.25 .
(2.25) inf |lu—ovllyry) =T (@) hlulluzks)-

veVr

The above theorem is an immediate consequence of inequality (2.24).

We proved Theorem 2.3 only for the case H'(R,), | =1.2. However, using
well-known extension theorems (see, e.g., [3, p. 30]), Theorem 2.3 can easily be
extended to more general domains.

Remark 2.1. There is an essential difference between Theorem 2.3, and
analogous theorems in the literature (see, e.g., [2, p. 138],[6],[7], [8] and others).
The inequality (2.25) is the same, but in the papers cited above, « is the minimum
angle of the triangles, whereas in our case it is the maximum angle. To obtain a
uniform estimate, Theorem 2.3 requires that a = a, < 7, where a, is independent
of h. The analogous theorems in the literature require that the minimum angle be
bounded below independently of h. Our theorems allow one angle to be arbitrar-
ily small, but no two angles may be arbitrarily small. In § 3 we show that if two
angles are small, then (2.25) does not generally hold.
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Theorem 2.3 shows that the usual minimum angle condition is not essential
when piecewise linear functions are used. The underlying idea is applicable in
general. We first briefly discuss the situation for the piecewise quadratic approxi-
mation. In this case, a quadratic polynomial is completely characterized by its 6
values at the vertices and at the midpoints of the sides (see Fig. 2.4).

T\
I

Fi1G.2.4

The essential step in the proof of the desired theorem is the estimate

[ ) vl 3l + () T
(2.26) Ela)= inf rer D061/ Tloxidxy)  Aoxidxy)  \xp

ueVia) ou\?  [ou\?
Joo G () |
T(a) axl 6x2
where V(a)< H*(T(a)) consists of functions which vanish at the vertices and at

the midpoints of the sides of T(a). To obtain this estimate, we need a lemma
analogous to Lemma 2.1, namely the following.

LEMMA 2.5. Let
2,0\ 2 2 s 2 <o
[ o (T4 an
(2.27) F?= inf X 0x, 0Xx,0x, x5

ew 2
“ J’ u”dx
T

Ed

where W is the space of all functions such that

1/2
(2.28) J u(0, x,) dx, =0,
0
1
(2.29) j M(O, X2) dX2 = 0,
1/2
1/2
(2.30) f u@3, x,) dx, =0.
0

Then F>0.
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The proof is very similar to the proof of Lemma 2.1. The essential part is the
fact that any linear function satisfying (2.28)—(2.30) is the zero function. Consider

[ w2 v
T axi’ axfaxz 6x18x§
L[ Pu \? u \2 ’u\?
v () e () e () ]
« axf()xz 8x18x§ “ axi X
E(a)= inf ,
J G re(Ze) ]
i a =
T ax] GX2 x

Letting w = du/dx, and v =du/dx, and using Lemma 2.5, we may show that

E(a)>Ey,>0 independently of a.

In a very similar manner, it is possible to furnish the analogous of the other results.

Other cases such as cubic and quartic approximations, etc., may be dealt with
similarly. In fact, the approach for obtaining the approximation result is always
the same; i.e., one first proves the analogues of Lemmas 2.1 and 2.4. An essential
step is to determine the proper number of conditions which are the analogues of
(2.28)—(2.30). In the case of quadratic approximation, we need three conditions
since du/dx, and du/dx, are linear. In the case of cubic approximation, we need 6
conditions. In this case, we show what these conditions are. To this end, we study
the cubic element on a right triangle when values and first derivatives of the
functions are prescribed in the vertices together with the integral (over the
triangle) of the second mixed derivative. It is easy to check that these ten
conditions determine uniquely the cubic polynomial.

The analysis of this case leads to the study of the subspace V< H*(T),
(T=T,(a) with h =a =1) of functions u which vanish together with their first
derivatives at the vertices and, in addition,

ou
J dx =0.

To proceed analogously as before, we need 6 conditions which are satisfied by
w =0du/dx, (resp. du/dx,), u€ V and such that the only quadratic polynomial
which satisfies all of them is zero.

The following conditions will give what we need:

w =0 at the vertices of the triangle (3 conditions),

1
| w0y dx,=o0,
(4]

d
[ a—w(xl, x,) dx =0.

T 0X3
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The analysis is now a simple repetition of the arguments used previously.

3. The maximum angle condition is essential. We show the essentiality of the
maximum angle condition by constructing an example. To this end, let

Q={(x;, x2)| |x:|<1, x| <1},

and let us consider a triangulation of () as shown in Fig. 3.1, where 1/(2H) and
N =1/h are integers.

|~
N N
e

Fi1G.3.1

Let us assume that C"h? <H=C®h® and 0< C"’ < C?® <. Then the
maximum and minimum angle conditions are satisfied for B =1. Let V,c H Q)
be the space of functions which are linear in every triangle. Then for B =1, we
have

3.1 inf [lu~olli @ = Chllullir@.

veVy

where C depends neither on h nor on u.

Now we show that (3.1) is not valid when 8 =5. In this case, obviously the
maximum and minimum angle condition is violated. In order to show that (3.1)
does not hold, we choose a special u, namely u, = x7.

Suppose, on the contrary, that (3.1) holds. Thus we can find, for every h (resp.
N), a function v, € V), such that

(3.2) o= villsst ey = Ch.

Let us single out a triangle 7 of our triangulation (see Fig. 3.2)
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F1G.3.2

Since du,/dx, =0, we have from (3.2)

2
(3.3) j () ar= o,
T ax2
On the other hand, dv,/dx, is constant, and hence we have
2 -_
(3.4) 9nl" < epr-s,
BX2
Now let

0" (x1, X2) = Uo(x1, X2) = w4 (x1, X2),
©" (x1, x2) =3[n" (1 +h, x2) + 0" (61 = b, x2)]— 0" (x1, x2).
Then we obviously have
(3.5) " (x1, x2) = > =V"(x,, x,),
where
W (x1, x2) =3[ 0n (X1 + h,x2) + 0, (x1 — B, X2)]— v (x4, X2).

The function W"(ih, x,) (i an integer) as a function of x, is obviously piecewise
linear, and we have

(3.6) V" (ih, jH) =0,

for all j even (resp. odd) integer when i is odd (resp. even).
On the other hand, (3.4) together with (3.6) yields

(3.7) W (ih, x,)|= C,h" 72,

where C, is independent of h. Thus we have

(3.8) @"(ih, x,) = C;h?,
for sufficiently small h, and C;>0 is independent of h.
Letting
i +1 . . 1 1
Z,-=£1 n(ih, x,) dx,, z=—ﬁ+l,~', +—};—1,

+1 . ) 1 1
Ofl:J;] (Ph(lh?XZ) dx27 l=~ﬁ+l’."7 +E_1’
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we obtain
6, = C;h’ (C5>0, independently of h)

and
(3.9) Z6 =27+ 70, =20]
In addition, (3.2) and a well-known imbedding theorem give, for —1/h=i=1/h,
(3.10) |Z! = C,h.
Define
(3.11) wi'=Cih+Cs((ih)*~1)
and
(3.12) &=wi-Z1
Then

2,20,  £,20
and

ELi 260+ £ =0
Therefore

&'=0 foralli.

Thus
(3.13) Z=—Cs+Cih

for all h, which is obviously in contradiction with (3.10). Therefore we have shown
that (3.2) cannot hold.

Remark 3.1. Let us change the triangulation shown in Fig. 3.1 to the one
shown in Fig. 3.3 below. This triangulation obviously violates the minimum angle
condition but satisfies the maximum angle condition. Therefore, as shown in
previous section, (3.2) holds.

F1G.3.3
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