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ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD*

I. BABUKA AND A. K. AZIZ"

Abstract. The finite element procedure consists in finding an approximate solution in the form of
piecewise linear functions, piecewise quadratic, etc. For two-dimensional problems, one of the most
frequently used approaches is to triangulate the domain and find the approximate solution which is
linear, quadratic, etc., in every triangle. A condition which is considered essential is that the angle of
every triangle, independent of its size, should not be small. In this paper it is shown that the minimum
angle condition is not essential. What is essential is the fact that no angle is too close to 180.

1. Introduction. The finite element method has been widely studied, and it
has become one of the most frequently used procedures for the numerical solution
of partial differential equations. Numerous results have been obtained in recent
years. We mention here [1] and the references quoted there, [2], [3], [4] and the
references cited in these papers.

The finite element method consists in seeking an approximate solution in the
form of piecewise linear functions, piecewise quadratics, etc. In two dimensions,
one of the most commonly used approaches is to triangulate the domain (i.e., to
cover the domain by triangles) and find the approximate solution which is linear,
quadratic, etc., in every triangle. A condition which is considered essential is that
the angle of any triangle, independent of its size, should not be small. This is called
the minimum angle condition, which is required in all studies, e.g., [5], [6], [7], [2,
p. 138] and many other papers. This condition has an analogue in higher
dimensions (see [8]). In some sense this condition is very restrictive, especially
when we seek to approximate functions which change more rapidly in one
direction than in another direction.

The present paper shows that the minimum angle condition is not essential.
What is essential is the fact that no angle is too close to 180. In other words, the
maximum angle condition is the proper condition in all 2-dimensional cases which
have been considered.

The maximal angle condition in the case of piecewise linear approximation is
referred to by Synge [10, p. 211]; however, it is not elaborated upon in any
subsequent papers directly connected to the finite element method. The method
of Synge appears to be hard to generalize. The approach in this paper is quite
different and obviously may be generalized in many directions.

We shall show that this maximum angle condition is sufficient and also, in
some sense necessary.

* Received by the editors November 19, 1974, and in revised form April 15, 1975.
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ANGLE CONDITION IN THE FINITE ELEMENT METHOD 215

2. The sufficiency of the maximal angle condition. We shall not present here
an abstract general version. Instead we prove a special theorem in two dimen-
sions, where the underlying basic idea, which is simple, may be clearly presented
without being encumbered by too many mathematical techniques. The generali-
zation to higher dimensions does not present any difficulty.

Let, for 0 < a _-< 1,

Th(Ol) {(Xl, X2)[O< x < h, O< xz < oz(h -Xl)}

(i.e., Th(a) is a right triangle (see Fig. 2.1)).

X2

We further let

and

FIG. 2.1

T(a) Tn(a) for h 1

T= Th(a) forh=c=l.

Given 1 c R2, we define the usual Sobolev (Hilbert) spaces Hl() (l integer) with

2(2.1)
o_-__/=<l

01+2 2

D
OXl OX2 i=1

where fl are integers and Iu[n)denotes the usual norm in Lz(fi), i.e.,

(2.2) 2 [ 2

Now we define

and

fo
h

}..h(C) {U E Hl(Th(c)), t(0, x2) dx2 0

-(a) {u E H2(T(a)), u(x 1, X2) =0, 1, 2, 3},

where (x 1, x2), i= 1, 2, 3, denote the coordinates of the vertices of T(a). For
h a 1, we omit writing the variables a and h. From well-known SobolevD
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216 I. BABUKA AND A. K. AZIZ

imbedding theorems, we know that h(C) (resp. ffh(c)) is a proper subspace of
Hl(Th(a)) (resp. H2(Th(a)).

Now we prove the following lemma.
LEMMA 2.1. Let

(2.3) A 2 inf

Then A2>0.

2u dx

Proof. If we let HI(T)/Po denote the quotient space modulo the set of
constant functions (see [9, 1.7, p. 19]), then we have

]blllHl(T)/eo const. + dx

(see [9, Thm. 1.6]).
Now let us assume that, on the contrary, A 0. Then there exists a sequence

{u,} E, i= i, 2,..., such that IJu, ll 2, , 1 and

/ +
Ox2/

dx O.

Therefore, using (2.4), we have l]ullnl)/Vo O.
Thus there exists a sequence {p} of constant functions such that

(2.6) Ilu -pi][,’w) o.
On the other hand, {llull,,,} is a bounded sequence. Therefore llpl],)
llp, ll, is also bounded, and consequently there exist subsequences uq and pq
such that l[u-Pll-’w) 0, p p, with p a constant function. Therefore

and thus

From the imbedding theorem it follows that

o
(u,,(0, x)_/)2 dx2 O.

Since u, Z, p 0. Therefore, 0, which is a contradiction because

(2.7) B2(c) inf ") \-x} +2\OX10X2/ +\OX2] dx

0<c< 1.

The proof of Lemma 2.1 is complete.
LEMMA 2.2. Let
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ANGLE CONDITION IN THE FINITE ELEMENT METHOD 217

Then B(a)>= A. (B(a) is positive uniformly with respect to .)
Proof. Let Q be a mapping of $-(a) onto $- such that

Q(u) U(xa, x2), (Xl, x2)6 T,

where

C(x,,x)=u(x,,x), (Xl, ax2) T(a)

Then obviously we have

(2.8) B2(c) inf
u

-’]- O1-4 dx
\OXlOX2l

and therefore, since 0 < c =< 1, we have

(2.9) B2(c)_-> inf
+
\OXIOX2/

q- Ol
\OXlOX2/

+ dx

Now letting OU/Ox2 w, since U H2(T), we have w Hi(T) and w " because
u -. Therefore from Lemma 2.1 we obtain

(2.10)

a-2A2 _I. W2 dx

dxo

In a similar fashion, by interchanging the role of x and X2, we obtain

(2.11) -]-\(..)Xl0X2,/ dx >=A 2 dx.

Therefore we have -- 01.
-2 dx

B2(c) inf _-> A 2

U
2 _2(02

and the lemma is proved.
In a similar way as that for Lemma 2.1, the following lemma may be proved.D
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218 x. BABUKA AND A. K. AZIZ

(2.12)

LEMMA 2.3. Let

The

(2.13)

[u]+2( azu ]2+ dx

2u dx

A>0.

The following lemma is also easily proved.
LEMMA 2.4. Let

(2.14) /2(a) inf
-o 2u dx

(,)

O<a=<l.

The?l

(2.15) B(a)>-_A.

(A is positive independently of a).
Let for u H (Th(a)), Ru be a linear function on Th(a) which coincides with

u at the vertices of Th(a). Further let Zu u-Ru. Z is obviously a mapping of
HZ(Th(a)) onto -n(c).

THEOaEM 2.1. Let

(2.16) C,(c) inf
2

2

(2.17) Ch(a)>-h-l(A-2h2+A-2)-1/2, O<h < 1

(uniformly with respect to , 0 < <= 1).
Proof. (i) We have

( o zu (o zu + 2\OxlOx2/ +\ OxN ] dx +llull,_,.,

and therefore

(2.18)
inf

+ 2\OXlOX2/ + \OX,] dx

+ dx + u2 dx
(,)
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ANGLE CONDITION IN THE FINITE ELEMENT METHOD 219

(2.19)

(2.20)

(ii) On the other hand, Lemmas 2.2 and 2.4 yield, for any u 6 -h(a),

,,) ) k} +2 + dx,

dx

+ 20-:x2/
+ dx,

and therefore

1
(2.21) C(a) > h-2-2h2 + A-2

At the beginning of this section we introduced the right triangle Th(a). Now
we define a general triangle Th(a, 7) such that it is the image of Th(a) under the
linear transformation v given by

where

:1 X " ’I/X2, 2 X2

(see Fig. 2.2.)

FIG. 2.2. Iwl < rr/2, 3’ tan w.

The Jacobian of this mapping is given by

J=
0 0

By the use of usual techniques (see, e.g., [2, p. 138] and [6]), we obtain the
following theorem.

THEOREM 2.2. Let

(2.22)

Then for any h <- 1,

(2.23)

2Ch(, 3’) IH2( yh(o,’y))

Ch (or, "y) > h-lair(T),D
ow

nl
oa

de
d 

12
/0

4/
25

 to
 1

28
.6

2.
20

8.
15

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



220 i. BABUKA AND A. K. AZIZ

where qff(3") is a continuous positive and finite function defined for all
(For I1 < o, we have () >-_ (7o) > 0).

Thus far we have considered only the case when one side of the triangle was
along the xi-axis. We observe that since the norms in Hl(f) are invariant with
respect to the rotation of the coordinates, Theorem 2.2 holds also for a triangle in
general position.

Consider a general triangle T as shown in Fig. 2.3,

A

FIG. 2.3

and assume that a is the maximum angle, obviously r > a ->_ r/3. Further, let h be
the length of the maximimal side of T. Let us associate with any triangle two real
numbers (a, h). Then Theorem 2.2 implies that

(2.24) ]lu RUl]nl(} <= r(a) hllull.2r,
where F(a)((r/3)_-< c < r) is an increasing finite function.

Let r be a triangulation of the entire two-dimensional space R2 ;i.e., we cover
R2 by triangles which are either disjoint or have a common vertex or a common
side. We associate with every triangulation two parameters a and h, h is the
largest side and a is the largest angle of all the triangles in the given triangulation.
Let V, c Hi(R2) be the space of all functions which are linear in every triangle of
our triangulation -. The following result holds.

THEOREM 2.3.

(2.25)
inf Ilu wll-’(R2) r()hilUllH(,)
V-

The above theorem is an immediate consequence of inequality (2.24).
We proved Theorem 2.3 only for the case HI(R2), 1.2. However, using

well-known extension theorems (see, e.g., [3, p. 30]), Theorem 2.3 can easily be
extended to more general domains.

Remark 2.1. There is an essential difference between Theorem 2.3, and
analogous theorems in the literature (see, e.g., [2, p. 138], [6], [7], [8] and others).
The inequality (2.25) is the same, but in the papers cited above, a is the minimum
angle of the triangles, whereas in our case it is the maximum angle. To obtain a
uniform estimate, Theorem 2.3 requires that a _-< ao < r, where ao is independent
of h. The analogous theorems in the literature require that the minimum angle be
bounded below independently of h. Our theorems allow one angle to be arbitrar-
ily small, but no two angles may be arbitrarily small. In 3 we show that if two
angles are small, then (2.25) does not generally hold.D
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ANGLE CONDITION IN THE FINITE ELEMENT METHOD 221

Theorem 2.3 shows that the usual minimum angle condition is not essential
when piecewise linear functions are used. The underlying idea is applicable in
general. We first briefly discuss the situation for the piecewise quadratic approxi-
mation. In this case, a quadratic polynomial is completely characterized by its 6
values at the vertices and at the midpoints of the sides (see Fig. 2.4).

FIG. 2.4

The essential step in the proof of the desired theorem is the estimate

(2.26) E(a)= inf
V()

IT [(03U2 (03U 2 (03u 2 {03U2+ 3\ox ox  + 3\ox ox / + ]
2

where V(a)c H3(T(a)) consists of functions which vanish at the vertices and at
the midpoints of the sides of T(a). To obtain this estimate, we need a lemma
analogous to Lemma 2.1, namely the following.

LEMMA 2.5. Let

(2.27) F2= inf
uEW

IT I(02U2"-2(19X119X2,]

2u dx

dx

where W is the space of all functions such that

(2.28) u(O, x2) dx2 O,
o

(2.29) fl U(0, X2) dx2 O,
/2

1/2

(2.30) u(1/2, x2) dx O.

Then F>0.D
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222 . BABU;KA AND A. K. AZIZ

The proof is very similar to the proof of Lemma 2.1. The essential part is the
fact that any linear function satisfying (2.28)-(2.30) is the zero function. Consider

E(c) inf
uV

Letting w Ou/Oxl and v Ou/Ox2 and using Lemma 2.5, we may show that

E(c) > Eo> 0 independently of a.

In a very similar manner, it is possible to furnish the analogous of the other results.
Other cases such as cubic and quartic approximations, etc., may be dealt with

similarly. In fact, the approach for obtaining the approximation result is always
the same; i.e., one first proves the analogues of Lemmas 2.1 and 2.4. An essential
step is to determine the proper number of conditions which are the analogues of
(2.28)-(2.30). In the case of quadratic approximation, we need three conditions
since Ou/Oxl and Ou/Ox2 are linear. In the case of cubic approximation, we need 6
conditions. In this case, we show what these conditions are. To this end, we study
the cubic element on a right triangle when values and first derivatives of the
functions are prescribed in the vertices together with the integral (over the
triangle) of the second mixed derivative. It is easy to check that these ten
conditions determine uniquely the cubic polynomial.

The analysis of this case leads to the study of the subspace V H4(T),
(T= Th(a) with h a 1) of functions u which vanish together with their first
derivatives at the vertices and, in addition,

dx O.
02u

OXlOX2
To proceed analogously as before, we need 6 conditions which are satisfied by
w Ou/Oxl (resp. Ou/Ox2), u V and such that the only quadratic polynomial
which satisfies all of them is zero.

The following conditions will give what we need:

w 0 at the vertices of the triangle (3 conditions),

fO W(X1, O) dXl O,

10W
(Xl, O) dXl O,

00X2

O-w (X dx O.X2)1,

c3x2D
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ANGLE CONDITION IN THE FINITE ELEMENT METHOD 223

The analysis is now a simple repetition of the arguments used previously.

3. The maximum angle condition is essential. We show the essentiality of the
maximum angle condition by constructing an example. To this end, let

:{(x,, Ix,l< Ix [<
and let us consider a triangulation of 1) as shown in Fig. 3.1, where 1/(2H) and
N 1/h are integers.

X2

1_ h .._L. h I

|

FG. 3.1

Let us assume that Cl)ht <H<C2)ht3 and 0< C)< C(2)< (2c). Then the
maximum and minimum angle conditions are satisfied for/3 1. Let Vh H(f)
be the space of functions which are linear in every triangle. Then for/3 1, we
have

(3.1) inf
Wh

where C depends neither on h nor on u.
Now we show that (3.1) is not valid when/3 _-> 5. In this case, obviously the

maximum and minimum angle condition is violated. In order to show that (3.1)
does not hold, we choose a special u, namely Uo x 2

1"

Suppose, on the contrary, that (3.1) holds. Thus we can find, for every h (resp.
N), a function Vh Vh such that

(3.2) I[Uo- v,ll.’(a)<= Ch.

Let us single out a triangle - of our triangulation (see Fig. 3.2)D
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224 . BABU;KA AND A. K. AZIZ

FIG. 3.2

Since OUo/OX2 0, we have from (3.2)

(3.3) dx <-

On the other hand, OVh/OX is constant, and hence we have

(3.4) OVh 2

’,hl-t3.
Ox2

Now let

n(x,, x)= Uo(Xl, x)-v(x,, x),
h h h[rt (Xl h, X2)---T ’i (X1, X2).(4

Then we obviously have
h h2_xith(3.5)

where

h(xl, X2) 1/2[t)h(X "1- h, x2) + Vh(X- h, X2)]--1.)h(Xl, X2).

The function h(ih, x2) (i an integer) as a function of x2 is obviously piecewise
linear, and we have

(3.6) qh(ih, ]H) O,

for all ] even (resp. odd) integer when is odd (resp. even).
On the other hand, (3.4) together with (3.6) yields

(3.7) Ih(ih, x2)l <---- Czh1+t)/2,

where C2 is independent of h. Thus we have

h h 2(3.8) p (ih, x2) G

for sufficiently small h, and C3 > 0 is independent of h.
Letting

Zhi rl(ih, X2) dx2,

ohm= qh(ih, x2) dx2,D
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ANGLE CONDITION IN THE FINITE ELEMENT METHOD 225

we obtain

and

(3.9)

Oi C3h2 (C3 > 0, independently of h)

Zh_l 2ZP+ Z,, 20
In addition, (3.2) and a well-known imbedding theorem give, for 1/h -< -<_ 1/h,

(3.o)

Define

(3.11)

and

(3.12)

Then

and

Therefore

Thus

Iz, l C4h.

wh C4h +C3((ih)2-1)

:l/h>01/h

- 2sc+ h+, _< 0.

s0 for all i.

(3.13) ZoO--< C3+ C4h

for all h, which is obviously in contradiction with (3.10). Therefore we have shown
that (3.2) cannot hold.

Remark 3.1. Let us change the triangulation shown in Fig. 3.1 to the one
shown in Fig. 3.3 below. This triangulation obviously violates the minimum angle
condition but satisfies the maximum angle condition. Therefore, as shown in
previous section, (3.2) holds.

FIG. 3.3D
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